File size: 7,442 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import torch

from fairseq import utils
from fairseq.data import Dictionary
from fairseq.data.language_pair_dataset import collate
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    FairseqIncrementalDecoder,
)
from fairseq.tasks import FairseqTask


def dummy_dictionary(vocab_size, prefix='token_'):
    d = Dictionary()
    for i in range(vocab_size):
        token = prefix + str(i)
        d.add_symbol(token)
    d.finalize(padding_factor=1)  # don't add extra padding symbols
    return d


def dummy_dataloader(
    samples,
    padding_idx=1,
    eos_idx=2,
    batch_size=None,
):
    if batch_size is None:
        batch_size = len(samples)

    # add any missing data to samples
    for i, sample in enumerate(samples):
        if 'id' not in sample:
            sample['id'] = i

    # create dataloader
    dataset = TestDataset(samples)
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)),
    )
    return iter(dataloader)


def sequence_generator_setup():
    # construct dummy dictionary
    d = dummy_dictionary(vocab_size=2)

    eos = d.eos()
    w1 = 4
    w2 = 5

    # construct source data
    src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]])
    src_lengths = torch.LongTensor([2, 2])

    args = argparse.Namespace()
    unk = 0.
    args.beam_probs = [
        # step 0:
        torch.FloatTensor([
            # eos      w1   w2
            # sentence 1:
            [0.0, unk, 0.9, 0.1],  # beam 1
            [0.0, unk, 0.9, 0.1],  # beam 2
            # sentence 2:
            [0.0, unk, 0.7, 0.3],
            [0.0, unk, 0.7, 0.3],
        ]),
        # step 1:
        torch.FloatTensor([
            # eos      w1   w2       prefix
            # sentence 1:
            [1.0, unk, 0.0, 0.0],  # w1: 0.9  (emit: w1 <eos>: 0.9*1.0)
            [0.0, unk, 0.9, 0.1],  # w2: 0.1
            # sentence 2:
            [0.25, unk, 0.35, 0.4],  # w1: 0.7  (don't emit: w1 <eos>: 0.7*0.25)
            [0.00, unk, 0.10, 0.9],  # w2: 0.3
        ]),
        # step 2:
        torch.FloatTensor([
            # eos      w1   w2       prefix
            # sentence 1:
            [0.0, unk, 0.1, 0.9],  # w2 w1: 0.1*0.9
            [0.6, unk, 0.2, 0.2],  # w2 w2: 0.1*0.1  (emit: w2 w2 <eos>: 0.1*0.1*0.6)
            # sentence 2:
            [0.60, unk, 0.4, 0.00],  # w1 w2: 0.7*0.4  (emit: w1 w2 <eos>: 0.7*0.4*0.6)
            [0.01, unk, 0.0, 0.99],  # w2 w2: 0.3*0.9
        ]),
        # step 3:
        torch.FloatTensor([
            # eos      w1   w2       prefix
            # sentence 1:
            [1.0, unk, 0.0, 0.0],  # w2 w1 w2: 0.1*0.9*0.9  (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0)
            [1.0, unk, 0.0, 0.0],  # w2 w1 w1: 0.1*0.9*0.1  (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0)
            # sentence 2:
            [0.1, unk, 0.5, 0.4],  # w2 w2 w2: 0.3*0.9*0.99  (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1)
            [1.0, unk, 0.0, 0.0],  # w1 w2 w1: 0.7*0.4*0.4  (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0)
        ]),
    ]

    task = TestTranslationTask.setup_task(args, d, d)
    model = task.build_model(args)
    tgt_dict = task.target_dictionary

    return tgt_dict, w1, w2, src_tokens, src_lengths, model


class TestDataset(torch.utils.data.Dataset):

    def __init__(self, data):
        super().__init__()
        self.data = data
        self.sizes = None

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return len(self.data)


class TestTranslationTask(FairseqTask):

    def __init__(self, args, src_dict, tgt_dict, model):
        super().__init__(args)
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict
        self.model = model

    @classmethod
    def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None):
        return cls(args, src_dict, tgt_dict, model)

    def build_model(self, args):
        return TestModel.build_model(args, self)

    @property
    def source_dictionary(self):
        return self.src_dict

    @property
    def target_dictionary(self):
        return self.tgt_dict


class TestModel(FairseqEncoderDecoderModel):
    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @classmethod
    def build_model(cls, args, task):
        encoder = TestEncoder(args, task.source_dictionary)
        decoder = TestIncrementalDecoder(args, task.target_dictionary)
        return cls(encoder, decoder)


class TestEncoder(FairseqEncoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
        self.args = args

    def forward(self, src_tokens, src_lengths=None, **kwargs):
        return src_tokens

    def reorder_encoder_out(self, encoder_out, new_order):
        return encoder_out.index_select(0, new_order)


class TestIncrementalDecoder(FairseqIncrementalDecoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
        assert hasattr(args, 'beam_probs') or hasattr(args, 'probs')
        args.max_decoder_positions = getattr(args, 'max_decoder_positions', 100)
        self.args = args

    def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None):
        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
        bbsz = prev_output_tokens.size(0)
        vocab = len(self.dictionary)
        src_len = encoder_out.size(1)
        tgt_len = prev_output_tokens.size(1)

        # determine number of steps
        if incremental_state is not None:
            # cache step number
            step = utils.get_incremental_state(self, incremental_state, 'step')
            if step is None:
                step = 0
            utils.set_incremental_state(self, incremental_state, 'step', step + 1)
            steps = [step]
        else:
            steps = list(range(tgt_len))

        # define output in terms of raw probs
        if hasattr(self.args, 'probs'):
            assert self.args.probs.dim() == 3, \
                'expected probs to have size bsz*steps*vocab'
            probs = self.args.probs.index_select(1, torch.LongTensor(steps))
        else:
            probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
            for i, step in enumerate(steps):
                # args.beam_probs gives the probability for every vocab element,
                # starting with eos, then unknown, and then the rest of the vocab
                if step < len(self.args.beam_probs):
                    probs[:, i, self.dictionary.eos():] = self.args.beam_probs[step]
                else:
                    probs[:, i, self.dictionary.eos()] = 1.0

        # random attention
        attn = torch.rand(bbsz, tgt_len, src_len)

        dev = prev_output_tokens.device
        return probs.to(dev), attn.to(dev)

    def get_normalized_probs(self, net_output, log_probs, _):
        # the decoder returns probabilities directly
        probs = net_output[0]
        if log_probs:
            return probs.log()
        else:
            return probs

    def max_positions(self):
        return self.args.max_decoder_positions