File size: 4,691 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
from io import StringIO
import unittest
from unittest.mock import MagicMock, patch

import torch

from fairseq import data, checkpoint_utils


def mock_trainer(epoch, num_updates, iterations_in_epoch):
    trainer = MagicMock()
    trainer.load_checkpoint.return_value = {
        'train_iterator': {
            'epoch': epoch,
            'iterations_in_epoch': iterations_in_epoch,
            'shuffle': False,
        },
    }
    trainer.get_num_updates.return_value = num_updates
    return trainer


def mock_dict():
    d = MagicMock()
    d.pad.return_value = 1
    d.eos.return_value = 2
    d.unk.return_value = 3
    return d


def get_trainer_and_epoch_itr(epoch, epoch_size, num_updates, iterations_in_epoch):
    tokens = torch.LongTensor(list(range(epoch_size))).view(1, -1)
    tokens_ds = data.TokenBlockDataset(
        tokens, sizes=[tokens.size(-1)], block_size=1, pad=0, eos=1, include_targets=False,
    )
    trainer = mock_trainer(epoch, num_updates, iterations_in_epoch)
    dataset = data.LanguagePairDataset(tokens_ds, tokens_ds.sizes, mock_dict(), shuffle=False)
    epoch_itr = data.EpochBatchIterator(
        dataset=dataset,
        collate_fn=dataset.collater,
        batch_sampler=[[i] for i in range(epoch_size)],
    )
    return trainer, epoch_itr


class TestLoadCheckpoint(unittest.TestCase):

    def setUp(self):
        self.args_mock = MagicMock()
        self.args_mock.optimizer_overrides = '{}'
        self.args_mock.reset_dataloader = False
        self.args_mock.reset_meters = False
        self.args_mock.reset_optimizer = False
        self.patches = {
            'os.makedirs': MagicMock(),
            'os.path.join': MagicMock(),
            'os.path.isfile': MagicMock(return_value=True),
            'os.path.isabs': MagicMock(return_value=False),
        }
        self.applied_patches = [patch(p, d) for p, d in self.patches.items()]
        [p.start() for p in self.applied_patches]

    def test_load_partial_checkpoint(self):

        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 200, 50)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)

            _, epoch_itr = checkpoint_utils.load_checkpoint(self.args_mock, trainer)

            self.assertEqual(epoch_itr.epoch, 2)
            self.assertEqual(epoch_itr.iterations_in_epoch, 50)

            itr = epoch_itr.next_epoch_itr(shuffle=False)
            self.assertEqual(epoch_itr.epoch, 2)
            self.assertEqual(epoch_itr.iterations_in_epoch, 50)

            self.assertEqual(next(itr)['net_input']['src_tokens'][0].item(), 50)
            self.assertEqual(epoch_itr.iterations_in_epoch, 51)

            for _ in range(150 - 52):
                next(itr)
            self.assertEqual(epoch_itr.iterations_in_epoch, 149)
            self.assertTrue(itr.has_next())
            next(itr)
            self.assertFalse(itr.has_next())

            itr = epoch_itr.next_epoch_itr(shuffle=False)
            self.assertTrue(itr.has_next())
            self.assertEqual(epoch_itr.epoch, 3)
            self.assertEqual(epoch_itr.iterations_in_epoch, 0)

    def test_load_full_checkpoint(self):
        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 300, 150)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)

            _, epoch_itr = checkpoint_utils.load_checkpoint(self.args_mock, trainer)
            itr = epoch_itr.next_epoch_itr(shuffle=False)

            self.assertEqual(epoch_itr.epoch, 3)
            self.assertEqual(epoch_itr.iterations_in_epoch, 0)
            self.assertEqual(next(itr)['net_input']['src_tokens'][0].item(), 0)

    def test_load_no_checkpoint(self):
        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(0, 150, 0, 0)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
            self.patches['os.path.isfile'].return_value = False

            _, epoch_itr = checkpoint_utils.load_checkpoint(self.args_mock, trainer)
            itr = epoch_itr.next_epoch_itr(shuffle=False)

            self.assertEqual(epoch_itr.epoch, 1)
            self.assertEqual(epoch_itr.iterations_in_epoch, 0)
            self.assertEqual(next(itr)['net_input']['src_tokens'][0].item(), 0)

    def tearDown(self):
        patch.stopall()


if __name__ == '__main__':
    unittest.main()