File size: 14,876 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import unittest

import torch

from fairseq.sequence_generator import SequenceGenerator

import tests.utils as test_utils


class TestSequenceGeneratorBase(unittest.TestCase):

    def assertHypoTokens(self, hypo, tokens):
        self.assertTensorEqual(hypo['tokens'], torch.LongTensor(tokens))

    def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.):
        pos_scores = torch.FloatTensor(pos_probs).log()
        self.assertAlmostEqual(hypo['positional_scores'], pos_scores)
        self.assertEqual(pos_scores.numel(), hypo['tokens'].numel())
        score = pos_scores.sum()
        if normalized:
            score /= pos_scores.numel()**lenpen
        self.assertLess(abs(score - hypo['score']), 1e-6)

    def assertAlmostEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertLess((t1 - t2).abs().max(), 1e-4)

    def assertTensorEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertEqual(t1.ne(t2).long().sum(), 0)


class TestSequenceGenerator(TestSequenceGeneratorBase):

    def setUp(self):
        self.tgt_dict, self.w1, self.w2, src_tokens, src_lengths, self.model = (
            test_utils.sequence_generator_setup()
        )
        self.sample = {
            'net_input': {
                'src_tokens': src_tokens, 'src_lengths': src_lengths,
            },
        }

    def test_with_normalization(self):
        generator = SequenceGenerator(self.tgt_dict, beam_size=2)
        hypos = generator.generate([self.model], self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6])

    def test_without_normalization(self):
        # Sentence 1: unchanged from the normalized case
        # Sentence 2: beams swap order
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, normalize_scores=False)
        hypos = generator.generate([self.model], self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False)

    def test_with_lenpen_favoring_short_hypos(self):
        lenpen = 0.6
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, len_penalty=lenpen)
        hypos = generator.generate([self.model], self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)

    def test_with_lenpen_favoring_long_hypos(self):
        lenpen = 5.0
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, len_penalty=lenpen)
        hypos = generator.generate([self.model], self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen)

    def test_maxlen(self):
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, max_len_b=2)
        hypos = generator.generate([self.model], self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w2, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01])


class TestDiverseBeamSearch(TestSequenceGeneratorBase):

    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = torch.LongTensor([
            [self.w1, self.w2, self.eos],
            [self.w1, self.w2, self.eos],
        ])
        self.src_lengths = torch.LongTensor([2, 2])

        args = argparse.Namespace()
        unk = 0.
        args.beam_probs = [
            # step 0:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [0.0, unk, 0.9, 0.1],  # beam 1
                [0.0, unk, 0.9, 0.1],  # beam 2
                # sentence 2:
                [0.0, unk, 0.7, 0.3],
                [0.0, unk, 0.7, 0.3],
            ]),
            # step 1:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [0.0, unk, 0.6, 0.4],
                [0.0, unk, 0.6, 0.4],
                # sentence 2:
                [0.25, unk, 0.35, 0.4],
                [0.25, unk, 0.35, 0.4],
            ]),
            # step 2:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                # sentence 2:
                [0.9, unk, 0.1, 0.0],
                [0.9, unk, 0.1, 0.0],
            ]),
        ]

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_diverse_beam_search(self):
        generator = SequenceGenerator(
            self.tgt_dict, beam_size=2, diverse_beam_groups=2, diverse_beam_strength=0.,
        )
        sample = {'net_input': {'src_tokens': self.src_tokens, 'src_lengths': self.src_lengths}}
        hypos = generator.generate([self.model], sample)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 0.6, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.9])


class TestTopPSamplingSearch(TestSequenceGeneratorBase):

    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = torch.LongTensor([
            [self.w1, self.w2, self.eos],
            [self.w1, self.w2, self.eos],
        ])
        self.src_lengths = torch.LongTensor([2, 2])

        args = argparse.Namespace()
        unk = 0.
        # The minimal probability of top 2 tokens.
        self.min_top2_prob = 0.75
        # The minimal probability of the top 1 token.
        self.min_top1_prob = 0.4

        w1_prob = self.min_top1_prob
        w2_prob = self.min_top2_prob - self.min_top1_prob
        eos_prob = 1 - self.min_top2_prob

        args.beam_probs = [
            # step 0:
            torch.FloatTensor([
                # eos      w1   w2
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
            ]),
            # step 1:
            torch.FloatTensor([
                # eos           w1       w2
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
            ]),
            # step 2:
            torch.FloatTensor([
                # eos      w1   w2
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
            ]),
        ]

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_topp_sampling_search_low_prob(self):
        # Given a prob low enough to top-P sampling, we expect only the top
        # 1 token to be sampled, which always results in the same output.
        low_sampling_topp = self.min_top1_prob/2.0
        generator = SequenceGenerator(
            self.tgt_dict, beam_size=2, sampling=True,
            sampling_topp=low_sampling_topp
        )
        sample = {
            'net_input': {
                'src_tokens': self.src_tokens,
                'src_lengths': self.src_lengths
            }
        }
        hypos = generator.generate([self.model], sample)
        eos, w1 = self.eos, self.w1
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
        self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w1, eos])
        self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w1, eos])
        self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0])

    def test_topp_sampling_search_high_prob(self):
        # Given a prob high enough to top-P sampling, any of the top 2
        # tokens could be sampled. This can cause different outputs.
        high_sampling_topp = (self.min_top1_prob+self.min_top2_prob)/2.0
        generator = SequenceGenerator(
            self.tgt_dict, beam_size=2, sampling=True,
            sampling_topp=high_sampling_topp
        )
        sample = {
            'net_input': {
                'src_tokens': self.src_tokens,
                'src_lengths': self.src_lengths
            }
        }
        hypos = generator.generate([self.model], sample)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertTrue(self.hypoTokens(hypos[0][0], [w1, w1, eos]) or
                        self.hypoTokens(hypos[0][0], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0]))

        # sentence 1, beam 2
        self.assertTrue(self.hypoTokens(hypos[0][1], [w1, w1, eos]) or
                        self.hypoTokens(hypos[0][1], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0]))

        # sentence 2, beam 1
        self.assertTrue(self.hypoTokens(hypos[1][0], [w1, w1, eos]) or
                        self.hypoTokens(hypos[1][0], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0]))

        # sentence 2, beam 2
        self.assertTrue(self.hypoTokens(hypos[1][1], [w1, w1, eos]) or
                        self.hypoTokens(hypos[1][1], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0]))

    def hypoTokens(self, hypo, tokens):
        return self.tensorEqual(hypo['tokens'], torch.LongTensor(tokens))

    def hypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.):
        pos_scores = torch.FloatTensor(pos_probs).log()
        if not self.almostEqual(hypo['positional_scores'], pos_scores):
            return False
        if pos_scores.numel() != hypo['tokens'].numel():
            return False
        score = pos_scores.sum()
        if normalized:
            score /= pos_scores.numel() ** lenpen
        return abs(score - hypo['score']) < 1e-6

    def almostEqual(self, t1, t2):
        return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4

    def tensorEqual(self, t1, t2):
        return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0


if __name__ == '__main__':
    unittest.main()