File size: 1,927 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# CamemBERT: a French BERT
## Introduction
CamemBERT is a pretrained language model trained on 138GB of French text based on RoBERTa.
Also available in [github.com/huggingface/transformers](https://github.com/huggingface/transformers/).
## Pre-trained models
Model | #params | vocab size | Download
---|---|---|---
`CamemBERT` | 110M | 32k | [camembert.v0.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert.v0.tar.gz)
## Example usage
##### Load CamemBERT from torch.hub (PyTorch >= 1.1):
```python
import torch
camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
camembert.eval() # disable dropout (or leave in train mode to finetune)
```
##### Load CamemBERT (for PyTorch 1.0 or custom models):
```python
# Download camembert model
wget https://dl.fbaipublicfiles.com/fairseq/models/camembert.v0.tar.gz
tar -xzvf camembert.v0.tar.gz
# Load the model in fairseq
from fairseq.models.roberta import CamembertModel
camembert = CamembertModel.from_pretrained('/path/to/camembert.v0')
camembert.eval() # disable dropout (or leave in train mode to finetune)
```
##### Filling masks:
```python
masked_line = 'Le camembert est <mask> :)'
camembert.fill_mask(masked_line, topk=3)
# [('Le camembert est délicieux :)', 0.4909118115901947, ' délicieux'),
# ('Le camembert est excellent :)', 0.10556942224502563, ' excellent'),
# ('Le camembert est succulent :)', 0.03453322499990463, ' succulent')]
```
##### Extract features from Camembert:
```python
# Extract the last layer's features
line = "J'aime le camembert !"
tokens = camembert.encode(line)
last_layer_features = camembert.extract_features(tokens)
assert last_layer_features.size() == torch.Size([1, 10, 768])
# Extract all layer's features (layer 0 is the embedding layer)
all_layers = camembert.extract_features(tokens, return_all_hiddens=True)
assert len(all_layers) == 13
assert torch.all(all_layers[-1] == last_layer_features)
```
|