File size: 20,354 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from inspect import isfunction
from operator import mul
from functools import reduce, wraps

from aml.multimodal_video.utils.einops.lib import rearrange, repeat
from aml.multimodal_video.utils.einops.lib.layers.torch import Rearrange

from fairseq.modules.local_attention import LocalAttention

# constants

TOKEN_SELF_ATTN_VALUE = -5e4
KMEAN_INIT_ITERS = 10

# helper functions


def exists(val):
    return val is not None


def identity(x, *args, **kwargs):
    return x


def default(x, d):
    if not exists(x):
        return d if not isfunction(d) else d()
    return x


def cast_tuple(x):
    return x if isinstance(x, tuple) else (x,)


def cache_fn(f):
    cache = None

    @wraps(f)
    def cached_fn(*args, **kwargs):
        nonlocal cache
        if exists(cache):
            return cache
        cache = f(*args, **kwargs)
        return cache
    return cached_fn


def to(t):
    return {'device': t.device, 'dtype': t.dtype}


def find_modules(nn_module, type):
    return [module for module in nn_module.modules() if isinstance(module, type)]


def is_empty(t):
    return t.nelement() == 0


def max_neg_value(tensor):
    return -torch.finfo(tensor.dtype).max


def batched_index_select(values, indices):
    last_dim = values.shape[-1]
    return values.gather(2, expand_dim(indices, -1, last_dim))


def merge_dims(ind_from, ind_to, tensor):
    shape = list(tensor.shape)
    arr_slice = slice(ind_from, ind_to + 1)
    shape[arr_slice] = [reduce(mul, shape[arr_slice])]
    return tensor.reshape(*shape)


def expand_dim(t, dim, k):
    t = t.unsqueeze(dim)
    expand_shape = [-1] * len(t.shape)
    expand_shape[dim] = k
    return t.expand(*expand_shape)


def scatter_mean(src, t, index, dim, eps=1e-5):
    numer = src.scatter_add(dim, index, t)
    denom = src.scatter_add(dim, index, torch.ones_like(t))
    return numer / (denom + eps)


def split_at_index(dim, index, t):
    pre_slices = (slice(None),) * dim
    l = (*pre_slices, slice(None, index))
    r = (*pre_slices, slice(index, None))
    return t[l], t[r]


def reshape_dim(t, dim, split_dims):
    shape = list(t.shape)
    num_dims = len(shape)
    dim = (dim + num_dims) % num_dims
    shape[dim:dim+1] = split_dims
    return t.reshape(shape)


def ema(old, new, decay):
    if not exists(old):
        return new
    return old * decay + new * (1 - decay)


def ema_inplace(moving_avg, new, decay):
    if is_empty(moving_avg):
        moving_avg.data.copy_(new)
        return
    moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))

# helper classes


def map_first_tuple_or_el(x, fn):
    if isinstance(x, tuple):
        return (fn(x[0]),) + x[1:]
    return fn(x)


class Chunk(nn.Module):
    def __init__(self, chunks, fn, along_dim=-1):
        super().__init__()
        self.dim = along_dim
        self.chunks = chunks
        self.fn = fn

    def forward(self, x, **kwargs):
        if self.chunks <= 1:
            return self.fn(x, **kwargs)
        chunks = x.chunk(self.chunks, dim=self.dim)
        return torch.cat([self.fn(c, **kwargs) for c in chunks], dim=self.dim)


class PreNorm(nn.ModuleList):
    def __init__(self, norm_class, dim, fn):
        super().__init__()
        self.norm = norm_class(dim)
        self.fn = fn

    def forward(self, x, **kwargs):
        x = self.norm(x)
        return self.fn(x, **kwargs)


class ReZero(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.residual_weight = nn.Parameter(torch.zeros(1))
        self.fn = fn

    def forward(self, x, **kwargs):
        x = self.fn(x, **kwargs)
        return map_first_tuple_or_el(x, lambda t: t * self.residual_weight)


class ScaleNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.g = nn.Parameter(torch.ones(1))
        self.eps = eps

    def forward(self, x):
        def norm(t):
            n = torch.norm(t, dim=-1, keepdim=True).clamp(min=self.eps)
            return t / n * self.g
        return map_first_tuple_or_el(x, norm)


class ProjectInOut(nn.Module):
    def __init__(self, fn, dim_in, dim_out, project_out=True):
        super().__init__()
        self.fn = fn
        self.project_in = nn.Linear(dim_in, dim_out)
        self.project_out = nn.Linear(dim_out, dim_in) if project_out else identity

    def forward(self, x, **kwargs):
        x = self.project_in(x)
        x, loss = self.fn(x, **kwargs)
        x = self.project_out(x)
        return x, loss


class MatrixMultiply(nn.Module):
    def __init__(self, tensor, transpose=False):
        super().__init__()
        self.tensor = tensor
        self.transpose = transpose

    def forward(self, x):
        tensor = self.tensor
        if self.transpose:
            tensor = tensor.t()
        return x @ tensor

# positional embeddings


class DepthWiseConv1d(nn.Module):
    def __init__(self, dim_in, dim_out, kernel_size, stride=1, bias=True, causal=False):
        super().__init__()
        self.padding = ((kernel_size - 1), 0) if causal else (kernel_size // 2, kernel_size // 2)

        self.net = nn.Sequential(
            nn.Conv1d(dim_in, dim_in, kernel_size=kernel_size, groups=dim_in, stride=stride, bias=bias),
            nn.Conv1d(dim_in, dim_out, 1, bias=bias)
        )

    def forward(self, x):
        x = F.pad(x, self.padding, value=0.)
        return self.net(x)


class FixedPositionalEmbedding(nn.Module):
    def __init__(self, dim, max_seq_len):
        super().__init__()
        inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        position = torch.arange(0, max_seq_len, dtype=torch.float)
        sinusoid_inp = torch.einsum("i,j->ij", position, inv_freq)
        emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
        self.register_buffer('emb', emb)

    def forward(self, x):
        return self.emb[None, :x.shape[1], :].to(x)


def rotate_every_two(x):
    x = rearrange(x, '... (d j) -> ... d j', j=2)
    x1, x2 = x.unbind(dim=-1)
    x = torch.stack((-x2, x1), dim=-1)
    return rearrange(x, '... d j -> ... (d j)')


def apply_rotary_pos_emb(q, k, sinu_pos):
    sinu_pos = rearrange(sinu_pos, '() n (j d) -> n j d', j=2)
    sin, cos = sinu_pos.unbind(dim=-2)
    sin, cos = map(lambda t: repeat(t, 'b n -> b (n j)', j=2), (sin, cos))
    q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k))
    return q, k

# kmeans related function and class


def update_kmeans_on_backwards(module):
    module.kmean_modules = find_modules(module, Kmeans)

    def hook(_, grad_in, grad_out):
        for m in module.kmean_modules:
            m.update()

    return module.register_backward_hook(hook)


def similarity(x, means):
    return torch.einsum('bhld,hcd->bhlc', x, means)


def dists_and_buckets(x, means):
    dists = similarity(x, means)
    _, buckets = torch.max(dists, dim=-1)
    return dists, buckets


def batched_bincount(index, num_classes, dim=-1):
    shape = list(index.shape)
    shape[dim] = num_classes
    out = index.new_zeros(shape)
    out.scatter_add_(dim, index, torch.ones_like(index, dtype=index.dtype))
    return out


def kmeans_iter(x, means, buckets=None):
    b, h, _, d, dtype, num_clusters = *x.shape, x.dtype, means.shape[1]

    if not exists(buckets):
        _, buckets = dists_and_buckets(x, means)

    bins = batched_bincount(buckets, num_clusters).sum(0, keepdim=True)
    zero_mask = bins.long() == 0

    means_ = buckets.new_zeros(b, h, num_clusters, d, dtype=dtype)
    means_.scatter_add_(-2, expand_dim(buckets, -1, d), x)
    means_ = F.normalize(means_.sum(0, keepdim=True), dim=-1).type(dtype)

    means = torch.where(zero_mask.unsqueeze(-1), means, means_)
    means = means.squeeze(0)
    return means


def distribution(dists, window_size):
    _, topk_indices = dists.topk(k=window_size, dim=-2)
    indices = topk_indices.transpose(-2, -1)
    return indices.reshape(*indices.size()[:2], -1)


class Kmeans(nn.Module):
    def __init__(self, num_heads, head_dim, num_clusters, ema_decay=0.999, commitment=1e-4):
        super().__init__()
        self.commitment = commitment
        self.ema_decay = ema_decay

        self.register_buffer('means', torch.randn(num_heads, num_clusters, head_dim))
        self.register_buffer('initted', torch.tensor(False))
        self.num_new_means = 0
        self.new_means = None

    @torch.no_grad()
    def init(self, x):
        if self.initted:
            return
        _, h, _, d, device, _ = *x.shape, x.device, x.dtype

        num_clusters = self.means.shape[1]

        means = x.transpose(0, 1).contiguous().view(h, -1, d)
        num_samples = means.shape[1]

        if num_samples >= num_clusters:
            indices = torch.randperm(num_samples, device=device)[:num_clusters]
        else:
            indices = torch.randint(0, num_samples, (num_clusters,), device=device)

        means = means[:, indices]

        for _ in range(KMEAN_INIT_ITERS):
            means = kmeans_iter(x, means)

        self.num_new_means = 0
        self.means.data.copy_(means)
        self.initted.data.copy_(torch.tensor(True))

    @torch.no_grad()
    def update(self, new_means=None):
        new_means = default(new_means, self.new_means)
        assert exists(new_means), 'new kmeans has not been supplied'
        ema_inplace(self.means, new_means, self.ema_decay)

        del self.new_means
        self.new_means = None
        self.num_new_means = 0

    def forward(self, x, update_means=False):
        self.init(x)

        b, dtype = x.shape[0], x.dtype
        means = self.means.type(dtype)
        x = F.normalize(x, 2, dim=-1).type(dtype)

        with torch.no_grad():
            dists, buckets = dists_and_buckets(x, means)

        routed_means = batched_index_select(expand_dim(means, 0, b), buckets)
        loss = F.mse_loss(x, routed_means) * self.commitment

        if update_means:
            with torch.no_grad():
                means = kmeans_iter(x, means, buckets)
            self.new_means = ema(self.new_means, means, self.num_new_means / (self.num_new_means + 1))
            self.num_new_means += 1

        return dists, loss

# kmeans attention class


class KmeansAttention(nn.Module):
    def __init__(self, num_clusters, window_size, num_heads, head_dim, causal=False, dropout=0., ema_decay=0.999, commitment=1e-4, context_window_size=None, receives_context=False, num_mem_kv=0, shared_qk=False):
        super().__init__()
        self.num_heads = num_heads
        self.num_clusters = num_clusters
        self.head_dim = head_dim

        self.window_size = window_size
        self.context_window_size = default(context_window_size, window_size)
        self.causal = causal

        self.shared_qk = shared_qk
        self.receives_context = receives_context
        self.kmeans = Kmeans(num_heads, head_dim, num_clusters, ema_decay, commitment)
        self.dropout = nn.Dropout(dropout)

        self.num_mem_kv = max(num_mem_kv, 1 if causal and not shared_qk else 0)
        self.mem_key = nn.Parameter(torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim))
        self.mem_value = nn.Parameter(torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim))

    def forward(self, q, k, v, query_mask=None, key_mask=None, **kwargs):
        b, h, t, d, kv_t, wsz, c_wsz, nc, device, dtype = *q.shape, k.shape[2], self.window_size, self.context_window_size, self.num_clusters, q.device, q.dtype
        is_reverse = kwargs.pop('_reverse', False)

        out = torch.zeros_like(q, dtype=dtype)

        update_kmeans = self.training and not is_reverse

        key_mask = default(key_mask, query_mask) if not self.receives_context else key_mask
        kv_wsz = wsz if not self.receives_context else c_wsz

        wsz = min(wsz, t)
        kv_wsz = min(kv_wsz, kv_t)

        if not self.shared_qk or self.receives_context:
            dists, aux_loss = self.kmeans(torch.cat((q, k), dim=2), update_kmeans)
            q_dists, k_dists = split_at_index(2, t, dists)
            indices = distribution(q_dists, wsz)
            kv_indices = distribution(k_dists, kv_wsz)
        else:
            dists, aux_loss = self.kmeans(q, update_kmeans)
            k = F.normalize(k, dim=-1).to(q)
            indices = distribution(dists, wsz)
            kv_indices = indices

        q = batched_index_select(q, indices)
        k = batched_index_select(k, kv_indices)
        v = batched_index_select(v, kv_indices)

        reshape_with_window = lambda x: x.reshape(b, h, nc, -1, d)
        q, k, v = map(reshape_with_window, (q, k, v))

        m_k, m_v = map(lambda x: expand_dim(x, 0, b).to(q), (self.mem_key, self.mem_value))
        k, v = map(lambda x: torch.cat(x, dim=3), ((m_k, k), (m_v, v)))

        dots = torch.einsum('bhnid,bhnjd->bhnij', q, k) * (d ** -0.5)

        mask_value = max_neg_value(dots)

        if exists(query_mask) or exists(key_mask):
            query_mask = default(query_mask, lambda: torch.ones((b, t), device=device).bool())
            key_mask = default(key_mask, lambda: torch.ones((b, kv_t), device=device).bool())

            q_mask = expand_dim(query_mask, 1, h).gather(2, indices)
            kv_mask = expand_dim(key_mask, 1, h).gather(2, kv_indices)
            q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (q_mask, kv_mask))
            mask = q_mask[:, :, :, :, None] * kv_mask[:, :, :, None, :]
            mask = F.pad(mask, (self.num_mem_kv, 0), value=1)
            dots.masked_fill_(~mask, mask_value)
            del mask

        if self.causal:
            q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices))
            mask = q_mask[:, :, :, :, None] >= kv_mask[:, :, :, None, :]
            mask = F.pad(mask, (self.num_mem_kv, 0), value=1)
            dots.masked_fill_(~mask, mask_value)
            del mask

        if self.shared_qk:
            q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices))
            mask = q_mask[:, :, :, :, None] == kv_mask[:, :, :, None, :]
            mask = F.pad(mask, (self.num_mem_kv, 0), value=0)
            dots.masked_fill_(mask, TOKEN_SELF_ATTN_VALUE)
            del mask

        dots = dots.softmax(dim=-1)
        dots = self.dropout(dots)

        bo = torch.einsum('bhcij,bhcjd->bhcid', dots, v)
        so = torch.reshape(bo, (b, h, -1, bo.shape[-1])).type(dtype)
        out = scatter_mean(out, so, indices.unsqueeze(-1).expand_as(so), -2)
        return out, aux_loss

# feedforward


class GELU_(nn.Module):
    def forward(self, x):
        return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


GELU = nn.GELU if hasattr(nn, 'GELU') else GELU_


class FeedForward(nn.Module):
    def __init__(self, dim, mult=4, dropout=0., activation=None, glu=False):
        super().__init__()
        activation = default(activation, GELU)

        self.glu = glu
        self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1))
        self.act = activation()
        self.dropout = nn.Dropout(dropout)
        self.w2 = nn.Linear(dim * mult, dim)

    def forward(self, x, **kwargs):
        if not self.glu:
            x = self.w1(x)
            x = self.act(x)
        else:
            x, v = self.w1(x).chunk(2, dim=-1)
            x = self.act(x) * v

        x = self.dropout(x)
        x = self.w2(x)
        return x

# self attention


class SelfAttention(nn.Module):
    def __init__(self, dim, max_seq_len, heads, local_attn_heads, window_size, dim_head=None, local_attn_window_size=None, local_attn_radius_blocks=1, causal=False, attn_dropout=0., dropout=0., kmeans_ema_decay=0.999, commitment_factor=1e-4, receives_context=False, context_window_size=None, rel_pos_emb=True, num_mem_kv=0, shared_qk=False, conv_query_kernel=9):
        super().__init__()
        assert dim_head or (dim % heads) == 0, 'hidden dimension must be divisible by number of heads'
        assert (max_seq_len % window_size) == 0, 'maximum sequence length must be divisible by the target window size'
        assert local_attn_heads <= heads, 'number of local attention heads must be less than total heads'
        assert not (receives_context and local_attn_heads > 0), 'local attention cannot be used for self attention with context'
        assert not (receives_context and causal), 'contextual attention layer cannot be causal'

        local_attn_window_size = default(local_attn_window_size, window_size)
        context_window_size = default(context_window_size, window_size)

        self.shared_qk = shared_qk
        self.receives_context = receives_context
        self.heads = heads
        self.local_attn_heads = local_attn_heads
        self.global_attn_heads = heads - local_attn_heads

        self.causal = causal
        self.window_size = window_size

        dim_head = default(dim_head, dim // heads)
        dim_heads = dim_head * heads
        self.dim_head = dim_head

        num_clusters = max_seq_len // window_size

        # local

        local_dim_heads = dim_head * self.local_attn_heads

        if self.local_attn_heads > 0:
            rel_pos_emb_config = (dim_head, local_attn_heads) if rel_pos_emb else None
            self.local_attn = LocalAttention(dim=dim_head, window_size=local_attn_window_size, causal=causal, dropout=attn_dropout, rel_pos_emb_config=rel_pos_emb_config, look_backward=local_attn_radius_blocks, look_forward=0 if causal else local_attn_radius_blocks)
            self.local_to_qkv = nn.Linear(dim, 3 * local_dim_heads)

        # global

        global_dim_heads = dim_head * self.global_attn_heads

        if self.global_attn_heads > 0:
            self.global_attn = KmeansAttention(num_clusters, window_size, self.global_attn_heads, dim_head, causal=causal, dropout=attn_dropout, ema_decay=kmeans_ema_decay, commitment=commitment_factor, receives_context=receives_context, num_mem_kv=num_mem_kv, shared_qk=shared_qk)

        self.to_q = nn.Sequential(
            Rearrange('b n c -> b c n'),
            DepthWiseConv1d(dim, global_dim_heads, conv_query_kernel, causal=causal),
            Rearrange('b c n -> b n c')
        )

        self.to_v = nn.Linear(dim, global_dim_heads, bias=False)

        if not self.shared_qk:
            self.to_k = nn.Linear(dim, global_dim_heads, bias=False)

        # out

        self.to_out = nn.Linear(dim_heads, dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, query, key, value, context=None, key_padding_mask=None, context_mask=None, pos_emb=None, **kwargs):
        assert not (self.receives_context and not exists(context)), 'context must be passed if self attention is set to receive context'
        input_mask = key_padding_mask
        x = query.transpose(0, 1)
        b, t, _, h, dh = *x.shape, self.heads, self.dim_head
        has_local, has_global = map(lambda x: x > 0, (self.local_attn_heads, self.global_attn_heads))

        split_heads = lambda v: reshape_dim(v, -1, (-1, dh)).transpose(1, 2).contiguous()

        if has_local:
            local_qkv = self.local_to_qkv(x).chunk(3, dim=-1)
            lq, lk, lv = map(split_heads, local_qkv)

        if has_global:
            kv_input = x if not self.receives_context else context

            q, v = self.to_q(x), self.to_v(kv_input)

            if not self.shared_qk:
                k = self.to_k(kv_input)
            else:
                k = self.to_q(kv_input) if self.receives_context else q

            q, k, v = map(split_heads, (q, k, v))

        out = []
        total_loss = torch.tensor(0., requires_grad=True, **to(x))

        if has_local:
            local_out = self.local_attn(lq, lk, lv, input_mask=input_mask)
            out.append(local_out)

        if has_global:
            if not self.receives_context and exists(pos_emb):
                q, k = apply_rotary_pos_emb(q, k, pos_emb)

            global_out, loss = self.global_attn(q, k, v, query_mask=input_mask, key_mask=context_mask)
            total_loss = total_loss + loss

            out.append(global_out)

        out = torch.cat(out, dim=1)
        out = out.reshape(b, h, t, -1).transpose(1, 2).reshape(b, t, -1)
        out = self.dropout(out.transpose(0, 1))
        # out = self.to_out(out)
        return out, total_loss