File size: 16,988 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from fairseq.dataclass.utils import gen_parser_from_dataclass
from fairseq.models import (
    register_model,
    register_model_architecture,
)
from fairseq.models.transformer.transformer_config import (
    TransformerConfig,
    DEFAULT_MAX_SOURCE_POSITIONS,
    DEFAULT_MAX_TARGET_POSITIONS,
    DEFAULT_MIN_PARAMS_TO_WRAP,
)
from fairseq.models.transformer.transformer_base import (
    TransformerModelBase,
)


@register_model("transformer")
class TransformerModel(TransformerModelBase):
    """
    This is the legacy implementation of the transformer model that
    uses argparse for configuration.
    """

    @classmethod
    def hub_models(cls):
        # fmt: off

        def moses_subword(path):
            return {
                'path': path,
                'tokenizer': 'moses',
                'bpe': 'subword_nmt',
            }

        def moses_fastbpe(path):
            return {
                'path': path,
                'tokenizer': 'moses',
                'bpe': 'fastbpe',
            }

        def spm(path):
            return {
                'path': path,
                'bpe': 'sentencepiece',
                'tokenizer': 'space',
            }

        return {
            'transformer.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'),
            'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2',
            'transformer.wmt18.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'),
            'transformer.wmt19.en-de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'),
            'transformer.wmt19.en-ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'),
            'transformer.wmt19.de-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'),
            'transformer.wmt19.ru-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'),
            'transformer.wmt19.en-de.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'),
            'transformer.wmt19.en-ru.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'),
            'transformer.wmt19.de-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'),
            'transformer.wmt19.ru-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'),
            'transformer.wmt20.en-ta': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-ta.single.tar.gz'),
            'transformer.wmt20.en-iu.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.news.single.tar.gz'),
            'transformer.wmt20.en-iu.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.nh.single.tar.gz'),
            'transformer.wmt20.ta-en': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.ta-en.single.tar.gz'),
            'transformer.wmt20.iu-en.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.news.single.tar.gz'),
            'transformer.wmt20.iu-en.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.nh.single.tar.gz'),
            'transformer.flores101.mm100.615M': spm('https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz'),
            'transformer.flores101.mm100.175M': spm('https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_175M.tar.gz'),
        }
        # fmt: on

    def __init__(self, args, encoder, decoder):
        cfg = TransformerConfig.from_namespace(args)
        super().__init__(cfg, encoder, decoder)
        self.args = args

    @classmethod
    def add_args(cls, parser):
        """Add model-specific arguments to the parser."""
        # we want to build the args recursively in this case.
        # do not set defaults so that settings defaults from various architectures still works
        gen_parser_from_dataclass(
            parser, TransformerConfig(), delete_default=True, with_prefix=""
        )

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        if args.encoder_layers_to_keep:
            args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
        if args.decoder_layers_to_keep:
            args.decoder_layers = len(args.decoder_layers_to_keep.split(","))

        if getattr(args, "max_source_positions", None) is None:
            args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
        if getattr(args, "max_target_positions", None) is None:
            args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS

        src_dict, tgt_dict = task.source_dictionary, task.target_dictionary

        if args.share_all_embeddings:
            if src_dict != tgt_dict:
                raise ValueError("--share-all-embeddings requires a joined dictionary")
            if args.encoder_embed_dim != args.decoder_embed_dim:
                raise ValueError(
                    "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
                )
            if args.decoder_embed_path and (
                args.decoder_embed_path != args.encoder_embed_path
            ):
                raise ValueError(
                    "--share-all-embeddings not compatible with --decoder-embed-path"
                )
            args.share_decoder_input_output_embed = True

        if getattr(args, "offload_activations", False):
            args.checkpoint_activations = True  # offloading implies checkpointing

        if not args.share_all_embeddings:
            args.min_params_to_wrap = getattr(
                args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP
            )
        cfg = TransformerConfig.from_namespace(args)
        return super().build_model(cfg, task)

    @classmethod
    def build_embedding(cls, args, dictionary, embed_dim, path=None):
        return super().build_embedding(
            TransformerConfig.from_namespace(args), dictionary, embed_dim, path
        )

    @classmethod
    def build_encoder(cls, args, src_dict, embed_tokens):
        return super().build_encoder(
            TransformerConfig.from_namespace(args), src_dict, embed_tokens
        )

    @classmethod
    def build_decoder(cls, args, tgt_dict, embed_tokens, encoder_layers=None):
        return super().build_decoder(
            TransformerConfig.from_namespace(args), tgt_dict, embed_tokens, encoder_layers=encoder_layers
        )


# architectures



@register_model_architecture("transformer", "transformer_tiny")
def tiny_architecture(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 64)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 64)
    args.encoder_layers = getattr(args, "encoder_layers", 2)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2)
    args.decoder_layers = getattr(args, "decoder_layers", 2)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2)
    return base_architecture(args)


@register_model_architecture("transformer", "transformer")
def base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.no_cross_attention = getattr(args, "no_cross_attention", False)
    args.cross_self_attention = getattr(args, "cross_self_attention", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
    args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
    args.offload_activations = getattr(args, "offload_activations", False)
    if args.offload_activations:
        args.checkpoint_activations = True
    args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
    args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
    args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
    args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
    args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)


@register_model_architecture("transformer", "transformer_edge")
def edge_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 12)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", 128
    )
    args.decoder_layers = getattr(args, "decoder_layers", 2)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.no_cross_attention = getattr(args, "no_cross_attention", False)
    args.cross_self_attention = getattr(args, "cross_self_attention", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    args.model_param_type = getattr(
        args, "model_param_type", "edgeformer"
    )

    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
    args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
    args.offload_activations = getattr(args, "offload_activations", False)
    if args.offload_activations:
        args.checkpoint_activations = True
    args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
    args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
    args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
    args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
    args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)


@register_model_architecture("transformer", "transformer_iwslt_de_en")
def transformer_iwslt_de_en(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    base_architecture(args)


@register_model_architecture("transformer", "transformer_wmt_en_de")
def transformer_wmt_en_de(args):
    base_architecture(args)


# parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017)
@register_model_architecture("transformer", "transformer_vaswani_wmt_en_de_big")
def transformer_vaswani_wmt_en_de_big(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
    args.dropout = getattr(args, "dropout", 0.3)
    base_architecture(args)


@register_model_architecture("transformer", "transformer_vaswani_wmt_en_fr_big")
def transformer_vaswani_wmt_en_fr_big(args):
    args.dropout = getattr(args, "dropout", 0.1)
    transformer_vaswani_wmt_en_de_big(args)


@register_model_architecture("transformer", "transformer_wmt_en_de_big")
def transformer_wmt_en_de_big(args):
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    transformer_vaswani_wmt_en_de_big(args)


# default parameters used in tensor2tensor implementation
@register_model_architecture("transformer", "transformer_wmt_en_de_big_t2t")
def transformer_wmt_en_de_big_t2t(args):
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_dropout = getattr(args, "activation_dropout", 0.1)
    transformer_vaswani_wmt_en_de_big(args)