File size: 8,018 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn
from fairseq import utils, options
from fairseq.dataclass.utils import gen_parser_from_dataclass
from fairseq.distributed import fsdp_wrap
from fairseq.models import FairseqEncoderDecoderModel
from fairseq.models.transformer import (
    TransformerEncoderBase,
    TransformerDecoderBase,
    TransformerConfig,
)
from torch import Tensor
from fairseq.modules import AdaptiveInput


class TransformerModelBase(FairseqEncoderDecoderModel):
    """
    Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017)
    <https://arxiv.org/abs/1706.03762>`_.

    Args:
        encoder (TransformerEncoder): the encoder
        decoder (TransformerDecoder): the decoder

    The Transformer model provides the following named architectures and
    command-line arguments:

    .. argparse::
        :ref: fairseq.models.transformer_parser
        :prog:
    """

    def __init__(self, cfg, encoder, decoder):
        super().__init__(encoder, decoder)
        self.cfg = cfg
        self.supports_align_args = True

    @classmethod
    def add_args(cls, parser):
        """Add model-specific arguments to the parser."""
        # we want to build the args recursively in this case.
        gen_parser_from_dataclass(
            parser, TransformerConfig(), delete_default=False, with_prefix=""
        )

    @classmethod
    def build_model(cls, cfg, task):
        """Build a new model instance."""

        # --  TODO T96535332
        #  bug caused by interaction between OmegaConf II and argparsing
        cfg.decoder.input_dim = int(cfg.decoder.input_dim)
        cfg.decoder.output_dim = int(cfg.decoder.output_dim)
        # --

        if cfg.encoder.layers_to_keep:
            cfg.encoder.layers = len(cfg.encoder.layers_to_keep.split(","))
        if cfg.decoder.layers_to_keep:
            cfg.decoder.layers = len(cfg.decoder.layers_to_keep.split(","))

        src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
        if cfg.adaptive_input is False:
            if cfg.share_all_embeddings:
                if src_dict != tgt_dict:
                    raise ValueError("--share-all-embeddings requires a joined dictionary")
                if cfg.encoder.embed_dim != cfg.decoder.embed_dim:
                    raise ValueError(
                        "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
                    )
                if cfg.decoder.embed_path and (
                    cfg.decoder.embed_path != cfg.encoder.embed_path
                ):
                    raise ValueError(
                        "--share-all-embeddings not compatible with --decoder-embed-path"
                    )
                encoder_embed_tokens = cls.build_embedding(
                    cfg, src_dict, cfg.encoder.embed_dim, cfg.encoder.embed_path
                )
                decoder_embed_tokens = encoder_embed_tokens
                cfg.share_decoder_input_output_embed = True
            else:
                encoder_embed_tokens = cls.build_embedding(
                    cfg, src_dict, cfg.encoder.embed_dim, cfg.encoder.embed_path
                )
                decoder_embed_tokens = cls.build_embedding(
                    cfg, tgt_dict, cfg.decoder.embed_dim, cfg.decoder.embed_path
                )
        else:
            encoder_embed_tokens = AdaptiveInput(
                len(task.source_dictionary),
                task.source_dictionary.pad(),
                cfg.encoder.embed_dim,
                cfg.adaptive_input_factor,
                cfg.encoder.embed_dim,
                options.eval_str_list(cfg.adaptive_input_cutoff, type=int),
                cfg.quant_noise_pq,
                cfg.quant_noise_pq_block_size,
            )
            decoder_embed_tokens = encoder_embed_tokens
            if cfg.tie_adaptive_weights:
                assert cfg.adaptive_input
                assert cfg.adaptive_input_factor == cfg.adaptive_softmax_factor
                assert (
                        cfg.adaptive_softmax_cutoff == cfg.adaptive_input_cutoff
                ), "{} != {}".format(
                    cfg.adaptive_softmax_cutoff, cfg.adaptive_input_cutoff
                )
                assert cfg.decoder_input_dim == cfg.decoder_output_dim
        if cfg.offload_activations:
            cfg.checkpoint_activations = True  # offloading implies checkpointing
        encoder = cls.build_encoder(cfg, src_dict, encoder_embed_tokens)
        decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens, encoder_layers=encoder.layers)
        if not cfg.share_all_embeddings:
            # fsdp_wrap is a no-op when --ddp-backend != fully_sharded
            encoder = fsdp_wrap(encoder, min_num_params=cfg.min_params_to_wrap)
            decoder = fsdp_wrap(decoder, min_num_params=cfg.min_params_to_wrap)
        return cls(cfg, encoder, decoder)

    @classmethod
    def build_embedding(cls, cfg, dictionary, embed_dim, path=None):
        num_embeddings = len(dictionary)
        padding_idx = dictionary.pad()

        emb = Embedding(num_embeddings, embed_dim, padding_idx)
        # if provided, load from preloaded dictionaries
        if path:
            embed_dict = utils.parse_embedding(path)
            utils.load_embedding(embed_dict, dictionary, emb)
        return emb

    @classmethod
    def build_encoder(cls, cfg, src_dict, embed_tokens):
        return TransformerEncoderBase(cfg, src_dict, embed_tokens)

    @classmethod
    def build_decoder(cls, cfg, tgt_dict, embed_tokens, encoder_layers=None):
        return TransformerDecoderBase(
            cfg,
            tgt_dict,
            embed_tokens,
            no_encoder_attn=cfg.no_cross_attention,
            encoder_layers=encoder_layers
        )

    # TorchScript doesn't support optional arguments with variable length (**kwargs).
    # Current workaround is to add union of all arguments in child classes.
    def forward(
        self,
        src_tokens,
        src_lengths,
        prev_output_tokens,
        return_all_hiddens: bool = True,
        features_only: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        """
        Run the forward pass for an encoder-decoder model.

        Copied from the base class, but without ``**kwargs``,
        which are not supported by TorchScript.
        """
        encoder_out = self.encoder(
            src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
        )
        decoder_out = self.decoder(
            prev_output_tokens,
            encoder_out=encoder_out,
            features_only=features_only,
            alignment_layer=alignment_layer,
            alignment_heads=alignment_heads,
            src_lengths=src_lengths,
            return_all_hiddens=return_all_hiddens,
        )
        return decoder_out

    # Since get_normalized_probs is in the Fairseq Model which is not scriptable,
    # I rewrite the get_normalized_probs from Base Class to call the
    # helper function in the Base Class.
    @torch.jit.export
    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Get normalized probabilities (or log probs) from a net's output."""
        return self.get_normalized_probs_scriptable(net_output, log_probs, sample)


def Embedding(num_embeddings, embedding_dim, padding_idx):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
    nn.init.constant_(m.weight[padding_idx], 0)
    return m