File size: 13,201 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging

import torch
from torch import nn

from fairseq.models import (FairseqEncoder, FairseqEncoderModel, register_model,
                            register_model_architecture)
from fairseq.modules import (
    LayerNorm, PositionalEmbedding, FairseqDropout, MultiheadAttention
)
from fairseq import utils
from fairseq.data.data_utils import lengths_to_padding_mask


logger = logging.getLogger(__name__)


def model_init(m):
    if isinstance(m, nn.Conv1d):
        nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("relu"))


def Embedding(num_embeddings, embedding_dim, padding_idx=None):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
    return m


class PositionwiseFeedForward(nn.Module):
    def __init__(self, in_dim, hidden_dim, kernel_size, dropout):
        super().__init__()
        self.ffn = nn.Sequential(
            nn.Conv1d(in_dim, hidden_dim, kernel_size=kernel_size,
                      padding=(kernel_size - 1) // 2),
            nn.ReLU(),
            nn.Conv1d(hidden_dim, in_dim, kernel_size=kernel_size,
                      padding=(kernel_size - 1) // 2)
        )
        self.layer_norm = LayerNorm(in_dim)
        self.dropout = self.dropout_module = FairseqDropout(
            p=dropout, module_name=self.__class__.__name__
        )

    def forward(self, x):
        # B x T x C
        residual = x
        x = self.ffn(x.transpose(1, 2)).transpose(1, 2)
        x = self.dropout(x)
        return self.layer_norm(x + residual)


class FFTLayer(torch.nn.Module):
    def __init__(
            self, embed_dim, n_heads, hidden_dim, kernel_size, dropout,
            attention_dropout
    ):
        super().__init__()
        self.self_attn = MultiheadAttention(
            embed_dim, n_heads, dropout=attention_dropout, self_attention=True
        )
        self.layer_norm = LayerNorm(embed_dim)
        self.ffn = PositionwiseFeedForward(
            embed_dim, hidden_dim, kernel_size, dropout=dropout
        )

    def forward(self, x, padding_mask=None):
        # B x T x C
        residual = x
        x = x.transpose(0, 1)
        x, _ = self.self_attn(
            query=x, key=x, value=x, key_padding_mask=padding_mask,
            need_weights=False
        )
        x = x.transpose(0, 1)
        x = self.layer_norm(x + residual)
        return self.ffn(x)


class LengthRegulator(nn.Module):
    def forward(self, x, durations):
        # x: B x T x C
        out_lens = durations.sum(dim=1)
        max_len = out_lens.max()
        bsz, seq_len, dim = x.size()
        out = x.new_zeros((bsz, max_len, dim))

        for b in range(bsz):
            indices = []
            for t in range(seq_len):
                indices.extend([t] * utils.item(durations[b, t]))
            indices = torch.tensor(indices, dtype=torch.long).to(x.device)
            out_len = utils.item(out_lens[b])
            out[b, :out_len] = x[b].index_select(0, indices)

        return out, out_lens


class VariancePredictor(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.conv1 = nn.Sequential(
            nn.Conv1d(
                args.encoder_embed_dim, args.var_pred_hidden_dim,
                kernel_size=args.var_pred_kernel_size,
                padding=(args.var_pred_kernel_size - 1) // 2
            ),
            nn.ReLU()
        )
        self.ln1 = nn.LayerNorm(args.var_pred_hidden_dim)
        self.dropout_module = FairseqDropout(
            p=args.var_pred_dropout, module_name=self.__class__.__name__
        )
        self.conv2 = nn.Sequential(
            nn.Conv1d(
                args.var_pred_hidden_dim, args.var_pred_hidden_dim,
                kernel_size=args.var_pred_kernel_size, padding=1
            ),
            nn.ReLU()
        )
        self.ln2 = nn.LayerNorm(args.var_pred_hidden_dim)
        self.proj = nn.Linear(args.var_pred_hidden_dim, 1)

    def forward(self, x):
        # Input: B x T x C; Output: B x T
        x = self.conv1(x.transpose(1, 2)).transpose(1, 2)
        x = self.dropout_module(self.ln1(x))
        x = self.conv2(x.transpose(1, 2)).transpose(1, 2)
        x = self.dropout_module(self.ln2(x))
        return self.proj(x).squeeze(dim=2)


class VarianceAdaptor(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.length_regulator = LengthRegulator()
        self.duration_predictor = VariancePredictor(args)
        self.pitch_predictor = VariancePredictor(args)
        self.energy_predictor = VariancePredictor(args)

        n_bins, steps = self.args.var_pred_n_bins, self.args.var_pred_n_bins - 1
        self.pitch_bins = torch.linspace(args.pitch_min, args.pitch_max, steps)
        self.embed_pitch = Embedding(n_bins, args.encoder_embed_dim)
        self.energy_bins = torch.linspace(args.energy_min, args.energy_max, steps)
        self.embed_energy = Embedding(n_bins, args.encoder_embed_dim)

    def get_pitch_emb(self, x, tgt=None, factor=1.0):
        out = self.pitch_predictor(x)
        bins = self.pitch_bins.to(x.device)
        if tgt is None:
            out = out * factor
            emb = self.embed_pitch(torch.bucketize(out, bins))
        else:
            emb = self.embed_pitch(torch.bucketize(tgt, bins))
        return out, emb

    def get_energy_emb(self, x, tgt=None, factor=1.0):
        out = self.energy_predictor(x)
        bins = self.energy_bins.to(x.device)
        if tgt is None:
            out = out * factor
            emb = self.embed_energy(torch.bucketize(out, bins))
        else:
            emb = self.embed_energy(torch.bucketize(tgt, bins))
        return out, emb

    def forward(
            self, x, padding_mask, durations=None, pitches=None, energies=None,
            d_factor=1.0, p_factor=1.0, e_factor=1.0
    ):
        # x: B x T x C
        log_dur_out = self.duration_predictor(x)
        dur_out = torch.clamp(
            torch.round((torch.exp(log_dur_out) - 1) * d_factor).long(), min=0
        )
        dur_out.masked_fill_(padding_mask, 0)

        pitch_out, pitch_emb = self.get_pitch_emb(x, pitches, p_factor)
        x = x + pitch_emb
        energy_out, energy_emb = self.get_energy_emb(x, energies, e_factor)
        x = x + energy_emb

        x, out_lens = self.length_regulator(
            x, dur_out if durations is None else durations
        )

        return x, out_lens, log_dur_out, pitch_out, energy_out


class FastSpeech2Encoder(FairseqEncoder):
    def __init__(self, args, src_dict, embed_speaker):
        super().__init__(src_dict)
        self.args = args
        self.padding_idx = src_dict.pad()
        self.n_frames_per_step = args.n_frames_per_step
        self.out_dim = args.output_frame_dim * args.n_frames_per_step

        self.embed_speaker = embed_speaker
        self.spk_emb_proj = None
        if embed_speaker is not None:
            self.spk_emb_proj = nn.Linear(
                args.encoder_embed_dim + args.speaker_embed_dim,
                args.encoder_embed_dim
            )

        self.dropout_module = FairseqDropout(
            p=args.dropout, module_name=self.__class__.__name__
        )
        self.embed_tokens = Embedding(
            len(src_dict), args.encoder_embed_dim, padding_idx=self.padding_idx
        )

        self.embed_positions = PositionalEmbedding(
            args.max_source_positions, args.encoder_embed_dim, self.padding_idx
        )
        self.pos_emb_alpha = nn.Parameter(torch.ones(1))
        self.dec_pos_emb_alpha = nn.Parameter(torch.ones(1))

        self.encoder_fft_layers = nn.ModuleList(
            FFTLayer(
                args.encoder_embed_dim, args.encoder_attention_heads,
                args.fft_hidden_dim, args.fft_kernel_size,
                dropout=args.dropout, attention_dropout=args.attention_dropout
            )
            for _ in range(args.encoder_layers)
        )

        self.var_adaptor = VarianceAdaptor(args)

        self.decoder_fft_layers = nn.ModuleList(
            FFTLayer(
                args.decoder_embed_dim, args.decoder_attention_heads,
                args.fft_hidden_dim, args.fft_kernel_size,
                dropout=args.dropout, attention_dropout=args.attention_dropout
            )
            for _ in range(args.decoder_layers)
        )

        self.out_proj = nn.Linear(args.decoder_embed_dim, self.out_dim)

        self.apply(model_init)

    def forward(self, src_tokens, src_lengths=None, speaker=None,
                durations=None, pitches=None, energies=None, **kwargs):
        x = self.embed_tokens(src_tokens)

        enc_padding_mask = src_tokens.eq(self.padding_idx)
        x += self.pos_emb_alpha * self.embed_positions(enc_padding_mask)
        x = self.dropout_module(x)

        for layer in self.encoder_fft_layers:
            x = layer(x, enc_padding_mask)

        if self.embed_speaker is not None:
            bsz, seq_len, _ = x.size()
            emb = self.embed_speaker(speaker).expand(bsz, seq_len, -1)
            x = self.spk_emb_proj(torch.cat([x, emb], dim=2))

        x, out_lens, log_dur_out, pitch_out, energy_out = \
            self.var_adaptor(x, enc_padding_mask, durations, pitches, energies)

        dec_padding_mask = lengths_to_padding_mask(out_lens)
        x += self.dec_pos_emb_alpha * self.embed_positions(dec_padding_mask)
        for layer in self.decoder_fft_layers:
            x = layer(x, dec_padding_mask)

        x = self.out_proj(x)

        return x, out_lens, log_dur_out, pitch_out, energy_out


@register_model("fastspeech2")
class FastSpeech2Model(FairseqEncoderModel):
    """
    Implementation for https://arxiv.org/abs/2006.04558
    """

    NON_AUTOREGRESSIVE = True

    @staticmethod
    def add_args(parser):
        parser.add_argument("--dropout", type=float)
        parser.add_argument("--output-frame-dim", type=int)
        parser.add_argument("--speaker-embed-dim", type=int)
        # FFT blocks
        parser.add_argument("--fft-hidden-dim", type=int)
        parser.add_argument("--fft-kernel-size", type=int)
        parser.add_argument("--attention-dropout", type=float)
        parser.add_argument("--encoder-layers", type=int)
        parser.add_argument("--encoder-embed-dim", type=int)
        parser.add_argument("--encoder-attention-heads", type=int)
        parser.add_argument("--decoder-layers", type=int)
        parser.add_argument("--decoder-embed-dim", type=int)
        parser.add_argument("--decoder-attention-heads", type=int)
        # variance predictor
        parser.add_argument("--var-pred-n-bins", type=int)
        parser.add_argument("--var-pred-hidden-dim", type=int)
        parser.add_argument("--var-pred-kernel-size", type=int)
        parser.add_argument("--var-pred-dropout", type=float)

    def __init__(self, encoder, args, src_dict):
        super().__init__(encoder)
        self._num_updates = 0

        out_dim = args.output_frame_dim * args.n_frames_per_step
        self.ctc_proj = None
        if getattr(args, "ctc_weight", 0.) > 0.:
            self.ctc_proj = nn.Linear(out_dim, len(src_dict))

    @classmethod
    def build_model(cls, args, task):
        embed_speaker = task.get_speaker_embeddings(args)
        encoder = FastSpeech2Encoder(args, task.src_dict, embed_speaker)
        return cls(encoder, args, task.src_dict)

    def set_num_updates(self, num_updates):
        super().set_num_updates(num_updates)
        self._num_updates = num_updates

    def get_normalized_probs(self, net_output, log_probs, sample=None):
        logits = self.ctc_proj(net_output[0])
        if log_probs:
            return utils.log_softmax(logits.float(), dim=-1)
        else:
            return utils.softmax(logits.float(), dim=-1)


@register_model_architecture("fastspeech2", "fastspeech2")
def base_architecture(args):
    args.dropout = getattr(args, "dropout", 0.2)
    args.output_frame_dim = getattr(args, "output_frame_dim", 80)
    args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 64)
    # FFT blocks
    args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1024)
    args.fft_kernel_size = getattr(args, "fft_kernel_size", 9)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.encoder_layers = getattr(args, "encoder_layers", 4)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2)
    args.decoder_layers = getattr(args, "decoder_layers", 4)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2)
    # variance predictor
    args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256)
    args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256)
    args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3)
    args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5)