Spaces:
Sleeping
Sleeping
File size: 9,358 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# Copyright (c) Facebook, Inc. All Rights Reserved
import numpy as np
import os
import torch
class Processor(object):
"""
A generic processor for video (codec, feature etc.) and text.
"""
def __call__(self, **kwargs):
raise NotImplementedError
class MetaProcessor(Processor):
"""
A meta processor is expected to load the metadata of a dataset:
(e.g., video_ids, or captions).
You must implement the `__getitem__` (meta datasets are rather diverse.).
"""
def __init__(self, config):
self.split = config.split
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
raise NotImplementedError
def _get_split_path(self, config):
splits = {
"train": config.train_path,
"valid": config.val_path,
"test": config.test_path,
}
if config.split is not None:
return splits[config.split]
return config.train_path
class TextProcessor(Processor):
"""
A generic Text processor: rename this as `withTokenizer`.
tokenize a string of text on-the-fly.
Warning: mostly used for end tasks.
(on-the-fly tokenization is slow for how2.)
TODO(huxu): move this class as a subclass.
"""
def __init__(self, config):
self.bert_name = str(config.bert_name)
self.use_fast = config.use_fast
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.bert_name, use_fast=self.use_fast
)
def __call__(self, text_id):
caption = self.tokenizer(text_id, add_special_tokens=False)
return caption["input_ids"]
class VideoProcessor(Processor):
"""
A generic video processor: load a numpy video tokens by default.
"""
def __init__(self, config):
self.vfeat_dir = config.vfeat_dir
def __call__(self, video_fn):
if isinstance(video_fn, tuple):
video_fn = video_fn[0]
assert isinstance(video_fn, str)
video_fn = os.path.join(self.vfeat_dir, video_fn + ".npy")
feat = np.load(video_fn)
return feat
class Aligner(object):
"""
An alignprocessor align video and text and output a dict of tensors (for a model).
"""
def __init__(self, config):
"""__init__ needs to be light weight for more workers/threads."""
self.split = config.split
self.max_video_len = config.max_video_len
self.max_len = config.max_len
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
str(config.bert_name), use_fast=config.use_fast
)
self.cls_token_id = tokenizer.cls_token_id
self.sep_token_id = tokenizer.sep_token_id
self.pad_token_id = tokenizer.pad_token_id
self.mask_token_id = tokenizer.mask_token_id
def __call__(self, video_id, video_feature, text_feature):
raise NotImplementedError
def _build_video_seq(self, video_feature, video_clips=None):
"""
`video_feature`: available video tokens.
`video_clips`: video clip sequence to build.
"""
if not isinstance(video_feature, np.ndarray):
raise ValueError(
"unsupported type of video_feature", type(video_feature)
)
if video_clips is None:
# this is borrowed from DSAligner
video_start = 0
video_end = min(len(video_feature), self.max_video_len)
# the whole sequence is a single clip.
video_clips = {"start": [video_start], "end": [video_end]}
vfeats = np.zeros(
(self.max_video_len, video_feature.shape[1]), dtype=np.float32
)
vmasks = torch.zeros((self.max_video_len,), dtype=torch.bool)
video_len = 0
for start, end in zip(video_clips["start"], video_clips["end"]):
clip_len = min(self.max_video_len - video_len, (end - start))
if clip_len > 0:
vfeats[video_len: video_len + clip_len] = video_feature[
start: start + clip_len
]
vmasks[video_len: video_len + clip_len] = 1
video_len += clip_len
vfeats = torch.from_numpy(vfeats)
return vfeats, vmasks
def _build_text_seq(self, text_feature, text_clip_indexs=None):
"""
`text_feature`: all available clips.
`text_clip_indexes`: clip sequence to build.
"""
if text_clip_indexs is None:
text_clip_indexs = [0]
full_caps = []
if isinstance(text_feature, dict):
for clip_idx in text_clip_indexs:
full_caps.extend(text_feature["cap"][clip_idx])
else:
full_caps = text_feature
max_text_len = self.max_len - self.max_video_len - 3
full_caps = full_caps[:max_text_len]
full_caps = (
[self.cls_token_id, self.sep_token_id] + full_caps + [self.sep_token_id]
)
text_pad_len = self.max_len - len(full_caps) - self.max_video_len
padded_full_caps = full_caps + [self.pad_token_id] * text_pad_len
caps = torch.LongTensor(padded_full_caps)
cmasks = torch.zeros((len(padded_full_caps),), dtype=torch.bool)
cmasks[: len(full_caps)] = 1
return caps, cmasks
def batch_post_processing(self, batch, video_feature):
return batch
class MMAttentionMask2DProcessor(Processor):
"""text generation requires 2d mask
that is harder to generate by GPU at this stage."""
def __call__(self, vmask, cmask, mtype):
if mtype == "textgen":
return self._build_textgeneration_mask(vmask, cmask)
elif mtype == "videogen":
return self._build_videogeneration_mask(vmask, cmask)
else:
return self._build_mm_mask(vmask, cmask)
def _build_mm_mask(self, vmask, cmask):
mask_1d = torch.cat([cmask[:1], vmask, cmask[1:]], dim=0)
return mask_1d[None, :].repeat(mask_1d.size(0), 1)
def _build_videogeneration_mask(self, vmask, cmask):
# cls_mask is only about text otherwise it will leak generation.
cls_text_mask = torch.cat([
# [CLS]
torch.ones(
(1,), dtype=torch.bool, device=cmask.device),
# video tokens and [SEP] for video.
torch.zeros(
(vmask.size(0) + 1,), dtype=torch.bool, device=cmask.device),
cmask[2:]
], dim=0)
# concat horizontially.
video_len = int(vmask.sum())
video_masks = torch.cat([
# [CLS]
torch.ones(
(video_len, 1), dtype=torch.bool, device=cmask.device
),
torch.tril(
torch.ones(
(video_len, video_len),
dtype=torch.bool, device=cmask.device)),
# video_padding
torch.zeros(
(video_len, vmask.size(0) - video_len),
dtype=torch.bool, device=cmask.device
),
# [SEP] for video (unused).
torch.zeros(
(video_len, 1), dtype=torch.bool, device=cmask.device
),
cmask[2:].unsqueeze(0).repeat(video_len, 1)
], dim=1)
text_masks = cls_text_mask[None, :].repeat(
cmask.size(0) - 2, 1)
video_padding_masks = cls_text_mask[None, :].repeat(
vmask.size(0) - video_len, 1)
return torch.cat([
cls_text_mask[None, :],
video_masks,
video_padding_masks,
torch.cat([cmask[:1], vmask, cmask[1:]], dim=0)[None,:],
text_masks
], dim=0)
def _build_textgeneration_mask(self, vmask, cmask):
# cls_mask is only about video otherwise it will leak generation.
cls_video_mask = torch.cat([
# [CLS]
torch.ones(
(1,), dtype=torch.bool, device=cmask.device),
vmask,
# [SEP]
torch.ones((1,), dtype=torch.bool, device=cmask.device),
torch.zeros(
(cmask.size(0)-2,), dtype=torch.bool, device=cmask.device)
], dim=0)
# concat horizontially.
text_len = int(cmask[2:].sum())
text_masks = torch.cat([
# [CLS]
torch.ones(
(text_len, 1), dtype=torch.bool, device=cmask.device
),
vmask.unsqueeze(0).repeat(text_len, 1),
# [SEP] for video.
torch.ones(
(text_len, 1), dtype=torch.bool, device=cmask.device
),
torch.tril(
torch.ones(
(text_len, text_len),
dtype=torch.bool, device=cmask.device)),
# padding.
torch.zeros(
(text_len, cmask.size(0) - text_len - 2),
dtype=torch.bool, device=cmask.device
)
], dim=1)
cls_video_masks = cls_video_mask[None, :].repeat(
vmask.size(0) + 2, 1)
text_padding_masks = cls_video_mask[None, :].repeat(
cmask.size(0) - text_len - 2, 1)
return torch.cat([
cls_video_masks, text_masks, text_padding_masks], dim=0)
|