Spaces:
Sleeping
Sleeping
File size: 32,302 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) Facebook, Inc. All Rights Reserved
import torch
import math
import pickle
import random
import os
import numpy as np
from collections import deque
from typing import Optional, Tuple, List
from .processor import (
Processor,
MetaProcessor,
TextProcessor,
Aligner,
MMAttentionMask2DProcessor
)
from ..utils import ShardedTensor
class How2MetaProcessor(MetaProcessor):
def __init__(self, config):
super().__init__(config)
path = self._get_split_path(config)
with open(path) as fd:
self.data = [line.strip() for line in fd]
def __getitem__(self, idx):
video_id = self.data[idx]
return video_id, video_id
class ShardedHow2MetaProcessor(How2MetaProcessor):
def __init__(self, config):
super().__init__(config)
self.split = str(config.split)
self.vfeat_dir = config.vfeat_dir
self._init_shard()
def _init_shard(self):
if self.split == "train":
meta_fn = os.path.join(self.vfeat_dir, "train" + "_meta.pkl")
with open(meta_fn, "rb") as fr:
meta = pickle.load(fr)
elif self.split == "valid":
meta_fn = os.path.join(self.vfeat_dir, "val" + "_meta.pkl")
with open(meta_fn, "rb") as fr:
meta = pickle.load(fr)
elif self.split == "test":
print("use how2 val as test.")
meta_fn = os.path.join(self.vfeat_dir, "val" + "_meta.pkl")
with open(meta_fn, "rb") as fr:
meta = pickle.load(fr)
else:
raise ValueError("unsupported for MetaProcessor:", self.split)
video_id_to_shard = {}
for shard_id in meta:
for video_idx, video_id in enumerate(meta[shard_id]):
video_id_to_shard[video_id] = (shard_id, video_idx)
self.video_id_to_shard = video_id_to_shard
def __getitem__(self, idx):
video_id, video_id = super().__getitem__(idx)
shard_id, shard_idx = self.video_id_to_shard[video_id]
meta = (video_id, idx, shard_id, shard_idx)
return meta, meta
class ShardedVideoProcessor(Processor):
"""
mmaped shards of numpy video features.
"""
def __init__(self, config):
self.split = str(config.split)
self.vfeat_dir = config.vfeat_dir
def __call__(self, video_id):
_, _, shard_id, video_idx = video_id
if self.split == "train":
shard = ShardedTensor.load(
os.path.join(self.vfeat_dir, "train" + "_" + str(shard_id)),
"r"
)
elif self.split == "valid":
shard = ShardedTensor.load(
os.path.join(self.vfeat_dir, "val" + "_" + str(shard_id)),
"r"
)
elif self.split == "test":
shard = ShardedTensor.load(
os.path.join(self.vfeat_dir, "val" + "_" + str(shard_id)),
"r"
)
else:
raise ValueError("unknown split", self.split)
feat = shard[video_idx]
return feat
class ShardedTextProcessor(Processor):
def __init__(self, config):
self.tfeat_dir = str(config.tfeat_dir)
self.split = str(config.split)
def __call__(self, video_id):
_, _, shard_id, shard_idx = video_id
if self.split == "train":
target_path = self.tfeat_dir + "train" + "_" + str(shard_id)
elif self.split == "valid":
target_path = self.tfeat_dir + "val" + "_" + str(shard_id)
elif self.split == "test":
target_path = self.tfeat_dir + "val" + "_" + str(shard_id)
else:
raise ValueError("unknown split", self.split)
startend = ShardedTensor.load(
target_path + ".startends", "r")[shard_idx]
cap_ids = ShardedTensor.load(
target_path + ".caps_ids", "r")[shard_idx]
cap = []
for clip_idx in range(len(cap_ids)):
clip = cap_ids[clip_idx]
cap.append(clip[clip != -1].tolist())
start, end = startend[:, 0].tolist(), startend[:, 1].tolist()
return {"start": start, "end": end, "cap": cap}
class FixedLenAligner(Aligner):
"""
In the model we assume text is on the left (closer to BERT formulation)
and video is on the right.
We fix the total length of text + video.
max_video_len is in number of secs.
max_text_len is in number of tokens.
special tokens formats:
we use the format [CLS] [SEP] text tokens [SEP] [PAD] ...
[CLS] will be splitted out into:
[CLS] video tokens [SEP] text tokens [SEP] [PAD] ...
token_type_ids will be generated by the model (for now).
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
so each sequence owns a [SEP] token for no-ops.
"""
def __init__(self, config):
super().__init__(config)
self.text_clip_sampler = TextClipSamplingProcessor(
self.max_len - self.max_video_len - 3
)
"""
decide subsampling:
`config.subsampling` will change batch_size in trainer.
`config.clip_per_video` (used by RetriTask) doesn't
change batch_size in trainer.
"""
subsampling = config.subsampling \
if config.subsampling is not None else None
if config.clip_per_video is not None:
subsampling = config.clip_per_video
self.subsampling = subsampling
def _get_text_maxlen(self):
# use max text len
return self.text_clip_sampler.max_text_len
def __call__(self, video_id, video_feature, text_feature):
from transformers import default_data_collator
video_idx = video_id[1]
if self.subsampling is not None and self.subsampling >= 1:
batch = []
for _ in range(self.subsampling):
centerclip_idx = random.randint(
0, len(text_feature["start"]) - 1)
batch.append(
self.sampling(
video_idx,
video_feature,
text_feature,
centerclip_idx,
self._get_text_maxlen()
))
batch = self.batch_post_processing(batch, video_feature)
batch = default_data_collator(batch)
else:
raise ValueError(
"dataset.subsampling must be >= 1 for efficient video loading.")
batch = self.sampling(video_idx, video_feature, text_feature)
batch = self.batch_post_processing(batch, video_feature)
batch["video_id"] = video_id if isinstance(video_id, str) \
else video_id[0]
# e2e: make sure frame ids is into tensor.
assert torch.is_tensor(batch["vfeats"])
return batch
def sampling(
self,
video_idx,
video_feature,
text_feature,
centerclip_idx=None,
sampled_max_text_len=None,
):
text_clip_indexs = self.text_clip_sampler(
text_feature, centerclip_idx,
sampled_max_text_len
)
if isinstance(video_feature, np.ndarray):
video_len = len(video_feature)
else:
video_len = math.ceil(text_feature["end"][-1])
video_end = min(
math.ceil(text_feature["end"][text_clip_indexs[-1]]),
video_len
)
video_start = max(
min(
math.floor(text_feature["start"][text_clip_indexs[0]]),
video_end),
0
)
video_clips = {"start": [video_start], "end": [video_end]}
# tensorize.
vfeats, vmasks = self._build_video_seq(
video_feature, video_clips
)
caps, cmasks = self._build_text_seq(
text_feature, text_clip_indexs
)
text_start = text_clip_indexs[0]
text_end = text_clip_indexs[-1] + 1
return {
"caps": caps,
"cmasks": cmasks,
"vfeats": vfeats,
"vmasks": vmasks,
"video_start": video_start,
"video_end": video_end,
"text_start": text_start,
"text_end": text_end,
}
class VariedLenAligner(FixedLenAligner):
def __init__(self, config):
super().__init__(config)
self.sampled_min_len = config.sampled_min_len
self.sampled_max_len = config.sampled_max_len
def _get_text_maxlen(self):
return random.randint(self.sampled_min_len, self.sampled_max_len)
class StartClipAligner(VariedLenAligner):
def sampling(
self,
video_idx,
video_feature,
text_feature,
centerclip_idx=None,
sampled_max_text_len=None,
):
return super().sampling(
video_idx, video_feature, text_feature, 0)
class OverlappedAligner(VariedLenAligner):
"""video clip and text clip has overlappings
but may not be the same start/end."""
def __init__(self, config):
super().__init__(config)
self.sampled_video_min_len = config.sampled_video_min_len
self.sampled_video_max_len = config.sampled_video_max_len
self.video_clip_sampler = VideoClipSamplingProcessor()
def _get_video_maxlen(self):
return random.randint(
self.sampled_video_min_len, self.sampled_video_max_len)
def sampling(
self,
video_idx,
video_feature,
text_feature,
centerclip_idx=None,
sampled_max_text_len=None,
):
text_clip_indexs = self.text_clip_sampler(
text_feature, centerclip_idx,
sampled_max_text_len
)
if isinstance(video_feature, np.ndarray):
video_len = len(video_feature)
else:
video_len = math.ceil(text_feature["end"][-1])
low = math.floor(text_feature["start"][text_clip_indexs[0]])
high = math.ceil(text_feature["end"][text_clip_indexs[-1]])
if low < high:
center = random.randint(low, high)
else:
center = int((low + high) // 2)
center = max(0, min(video_feature.shape[0] - 1, center))
assert 0 <= center < video_feature.shape[0]
video_clips = self.video_clip_sampler(
video_len, self._get_video_maxlen(), center
)
video_start = video_clips["start"][0]
video_end = video_clips["end"][0]
# tensorize.
vfeats, vmasks = self._build_video_seq(
video_feature, video_clips
)
caps, cmasks = self._build_text_seq(
text_feature, text_clip_indexs
)
text_start = text_clip_indexs[0]
text_end = text_clip_indexs[-1] + 1
return {
"caps": caps,
"cmasks": cmasks,
"vfeats": vfeats,
"vmasks": vmasks,
"video_start": video_start,
"video_end": video_end,
"text_start": text_start,
"text_end": text_end,
}
class MFMMLMAligner(FixedLenAligner):
"""
`FixedLenAligner` with Masked Language Model and Masked Frame Model.
"""
def __init__(self, config):
super().__init__(config)
keep_prob = config.keep_prob if config.keep_prob is not None else 1.0
self.text_clip_sampler = TextClipSamplingProcessor(
self.max_len - self.max_video_len - 3, keep_prob
)
self.sampled_min_len = config.sampled_min_len
self.sampled_max_len = config.sampled_max_len
self.masked_token_sampler = TextMaskingProcessor(config)
self.mm_type = config.mm_type \
if config.mm_type is not None else "full"
self.attnmasker = MMAttentionMask2DProcessor() \
if self.mm_type == "textgen" else None
self.masked_frame_sampler = FrameMaskingProcessor(config)
self.lazy_vfeat_mask = (
False if config.lazy_vfeat_mask is None else config.lazy_vfeat_mask
)
self.mm_prob = config.mm_prob if config.mm_prob is not None else 0.
def __call__(self, video_id, video_feature, text_feature):
from transformers import default_data_collator
if self.subsampling is not None and self.subsampling > 1:
batch = []
for _ in range(self.subsampling):
centerclip_idx = random.randint(
0, len(text_feature["start"]) - 1)
sampled_max_text_len = random.randint(
self.sampled_min_len, self.sampled_max_len
)
batch.append(
self.sampling(
video_id,
video_feature,
text_feature,
centerclip_idx,
sampled_max_text_len,
)
)
batch = self.batch_post_processing(batch, video_feature)
batch = default_data_collator(batch)
else:
batch = self.sampling(video_id, video_feature, text_feature)
batch = self.batch_post_processing(batch, video_feature)
batch["video_id"] = video_id if isinstance(video_id, str) \
else video_id[0]
return batch
def sampling(
self,
video_id,
video_feature,
text_feature,
centerclip_idx=None,
sampled_max_text_len=None,
):
output = FixedLenAligner.sampling(self,
video_id, video_feature, text_feature,
centerclip_idx, sampled_max_text_len)
masking_text, masking_video = None, None
if random.random() < self.mm_prob:
if random.random() > 0.5:
masking_text, masking_video = self.mm_type, "no"
else:
masking_text, masking_video = "no", "full"
video_feats = output["vfeats"] if not self.lazy_vfeat_mask else None
video_label = self.masked_frame_sampler(
output["vmasks"], masking_video, vfeats=video_feats)
caps, text_label = self.masked_token_sampler(
output["caps"], masking_text)
output.update({
"caps": caps,
"video_label": video_label,
"text_label": text_label,
})
if self.attnmasker is not None:
attention_mask = self.attnmasker(
output["vmasks"], output["cmasks"], masking_text)
output.update({
"attention_mask": attention_mask
})
return output
class FrameMaskingProcessor(Processor):
def __init__(self, config):
self.mfm_probability = 0.15
if config.mfm_probability is not None:
self.mfm_probability = config.mfm_probability
def __call__(self, vmasks, modality_masking=None, vfeats=None):
"""
We perform lazy masking to save data transfer time.
It only generates video_labels by default and MFM model
will do actualy masking.
Return: `video_label` is a binary mask.
"""
video_label = vmasks.clone()
if modality_masking is not None:
if modality_masking == "full":
probability_matrix = torch.full(video_label.shape, 1.)
elif modality_masking == "no":
probability_matrix = torch.full(video_label.shape, 0.)
elif modality_masking == "inverse":
probability_matrix = torch.full(
video_label.shape, 1. - self.mfm_probability)
else:
raise ValueError("unknown modality masking.", modality_masking)
else:
probability_matrix = torch.full(
video_label.shape, self.mfm_probability)
masked_indices = torch.bernoulli(probability_matrix).bool()
# We only compute loss on masked tokens
video_label[~masked_indices] = 0
if vfeats is not None:
vfeats[video_label, :] = 0.0
return video_label
class TextGenerationProcessor(Processor):
def __init__(self, tokenizer):
self.bos_token_id = tokenizer.bos_token_id
self.pad_token_id = tokenizer.pad_token_id
def __call__(self, inputs):
labels = inputs.clone()
# [CLS] [SEP] for video
labels[:2] = -100
# keep [SEP] for text.
pad_mask = labels == self.pad_token_id
labels[pad_mask] = -100
inputs[2:] = torch.cat([
torch.LongTensor([self.bos_token_id]),
inputs[2:-1]])
inputs[pad_mask] = self.pad_token_id
assert len(inputs) == len(labels)
return inputs, labels
class TextMaskingProcessor(Processor):
def __init__(self, config):
"""this function is borrowed from
`transformers/data/data_collator.DataCollatorForLanguageModeling`"""
self.mlm_probability = 0.15
if config.mlm_probability is not None:
self.mlm_probability = config.mlm_probability
self.bert_name = config.bert_name
# [CLS] is used as bos_token and [SEP] is used as eos_token.
# https://huggingface.co/transformers/master/model_doc/bertgeneration.html
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.bert_name, bos_token="[CLS]", eos_token="[SEP]")
self.textgen = TextGenerationProcessor(self.tokenizer)
def __call__(
self, inputs: torch.Tensor,
modality_masking=None,
special_tokens_mask: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
expand modality_masking into
None: traditional bert masking.
"no": no masking.
"full": all [MASK] token for generation.
"gen": autoregressive generation.
"""
"""
Prepare masked tokens inputs/labels for masked language modeling:
80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training
# (with probability `self.mlm_probability`)
if modality_masking is not None:
if modality_masking == "full":
probability_matrix = torch.full(labels.shape, 1.)
elif modality_masking == "no":
probability_matrix = torch.full(labels.shape, 0.)
elif modality_masking.startswith("textgen"):
# [CLS] [SEP] <s> ...
inputs, labels = self.textgen(inputs)
if "mask" not in modality_masking:
return inputs, labels
inputs = self.mask_input(inputs, special_tokens_mask)
return inputs, labels
elif modality_masking == "mask":
inputs = self.mask_input(inputs, special_tokens_mask)
labels = torch.full(inputs.shape, -100)
return inputs, labels
elif modality_masking == "inverse":
probability_matrix = torch.full(labels.shape, 1. - self.mlm_probability)
else:
raise ValueError("unknown modality masking.", modality_masking)
else:
probability_matrix = torch.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = self.get_special_tokens_mask(
labels.tolist(), already_has_special_tokens=True
)
special_tokens_mask = torch.tensor(
special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time,
# we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = (
torch.bernoulli(
torch.full(labels.shape, 0.8)).bool() & masked_indices
)
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(
self.tokenizer.mask_token
)
# 10% of the time, we replace masked input tokens with random word
indices_random = (
torch.bernoulli(torch.full(labels.shape, 0.5)).bool()
& masked_indices
& ~indices_replaced
)
random_words = torch.randint(
len(self.tokenizer), labels.shape, dtype=torch.long
)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input
# tokens unchanged
return inputs, labels
def mask_input(self, inputs, special_tokens_mask=None):
# the following is new with masked autoregressive.
probability_matrix = torch.full(
inputs.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = self.get_special_tokens_mask(
inputs.tolist(), already_has_special_tokens=True
)
special_tokens_mask = torch.tensor(
special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
indices_replaced = (
torch.bernoulli(
torch.full(inputs.shape, 0.8)).bool() & masked_indices
)
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(
self.tokenizer.mask_token
)
# 10% of the time, we replace masked input tokens with random word
indices_random = (
torch.bernoulli(torch.full(inputs.shape, 0.5)).bool()
& masked_indices
& ~indices_replaced
)
random_words = torch.randint(
len(self.tokenizer), inputs.shape, dtype=torch.long
)
inputs[indices_random] = random_words[indices_random]
return inputs
def get_special_tokens_mask(
self, token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False
) -> List[int]:
"""
Note: the version from transformers do not consider pad
as special tokens.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if"
"the provided sequence of "
"ids is already formated with special tokens "
"for the model."
)
return list(map(lambda x: 1 if x in [
self.tokenizer.sep_token_id,
self.tokenizer.cls_token_id,
self.tokenizer.pad_token_id] else 0, token_ids_0))
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
class TextClipSamplingProcessor(Processor):
def __init__(self, max_text_len, keep_prob=1.0):
self.max_text_len = max_text_len
self.max_video_len = 256 # always hold.
self.keep_prob = keep_prob
def __call__(
self,
text_feature,
centerclip_idx=None,
sampled_max_text_len=None,
sampled_max_video_len=None,
):
# Let's use all caps for now and see if 256 can cover all of them.
if sampled_max_text_len is not None:
max_text_len = sampled_max_text_len
else:
max_text_len = self.max_text_len
if sampled_max_video_len is not None:
max_video_len = sampled_max_video_len
else:
max_video_len = self.max_video_len
t_num_clips = len(text_feature["start"])
if centerclip_idx is None:
centerclip_idx = random.randint(0, t_num_clips - 1)
start_idx, end_idx = centerclip_idx, centerclip_idx + 1
text_clip_indexs = deque()
text_clip_indexs.append(start_idx)
text_len = len(text_feature["cap"][start_idx])
video_len = max(
0,
text_feature["end"][start_idx]
- text_feature["start"][start_idx],
)
while (
(start_idx > 0 or end_idx < t_num_clips)
and text_len < max_text_len
and video_len < max_video_len
):
if random.random() > 0.5 and end_idx < t_num_clips:
# skip the next one?
if random.random() > self.keep_prob and (end_idx + 1) < t_num_clips:
end_idx = end_idx + 1
text_clip_indexs.append(end_idx)
text_len += len(text_feature["cap"][end_idx])
end_idx += 1
elif start_idx > 0:
if random.random() > self.keep_prob and (start_idx - 1) > 0:
start_idx = start_idx - 1
start_idx -= 1
text_clip_indexs.insert(0, start_idx)
text_len += len(text_feature["cap"][start_idx])
else:
if end_idx < t_num_clips:
if random.random() > self.keep_prob and (end_idx + 1) < t_num_clips:
end_idx = end_idx + 1
text_clip_indexs.append(end_idx)
text_len += len(text_feature["cap"][end_idx])
end_idx += 1
else:
return text_clip_indexs
video_len = max(
0,
text_feature["end"][text_clip_indexs[-1]]
- text_feature["start"][text_clip_indexs[0]],
)
return text_clip_indexs
class VideoClipSamplingProcessor(Processor):
def __call__(self, video_len, max_video_len, center):
"""
`video_len`: length of the video.
`max_video_len`: maximum video tokens allowd in a sequence.
`center`: initial starting index.
"""
assert center >= 0 and center < video_len
t_clip_len = 0
start, end = center, center
while (start > 0 or end < video_len) and t_clip_len < max_video_len:
# decide the direction to grow.
if start <= 0:
end += 1
elif end >= video_len:
start -= 1
elif random.random() > 0.5:
end += 1
else:
start -= 1
t_clip_len += 1
return {"start": [start], "end": [end]}
class How2MILNCEAligner(FixedLenAligner):
"""reference: `antoine77340/MIL-NCE_HowTo100M/video_loader.py`"""
def __init__(self, config):
super().__init__(config)
self.num_candidates = 4
self.min_time = 5.0
self.num_sec = 3.2
# self.num_sec = self.num_frames / float(self.fps) num_frames=16 / fps = 5
# self.num_frames = 16
def sampling(
self,
video_id,
video_feature,
text_feature,
centerclip_idx=None, # will be ignored.
sampled_max_text_len=None # will be ignored.
):
text, start, end = self._get_text(text_feature)
video = self._get_video(video_feature, start, end)
vfeats = torch.zeros((self.max_video_len, video_feature.shape[1]))
vmasks = torch.zeros((self.max_video_len,), dtype=torch.bool)
vfeats[: video.shape[0]] = torch.from_numpy(np.array(video))
vmasks[: video.shape[0]] = 1
caps, cmasks = [], []
for words in text:
cap, cmask = self._build_text_seq(text_feature, words)
caps.append(cap)
cmasks.append(cmask)
caps = torch.stack(caps)
cmasks = torch.stack(cmasks)
# video of shape: (video_len)
# text of shape (num_candidates, max_text_len)
return {
"caps": caps,
"cmasks": cmasks,
"vfeats": vfeats,
"vmasks": vmasks,
# "video_id": video_id,
}
def _get_video(self, video_feature, start, end):
start_seek = random.randint(start, int(max(start, end - self.num_sec)))
# duration = self.num_sec + 0.1
return video_feature[start_seek : int(start_seek + self.num_sec)]
def _get_text(self, cap):
ind = random.randint(0, len(cap["start"]) - 1)
if self.num_candidates == 1:
words = [ind]
else:
words = []
cap_start = self._find_nearest_candidates(cap, ind)
for i in range(self.num_candidates):
words.append([max(0, min(len(cap["cap"]) - 1, cap_start + i))])
start, end = cap["start"][ind], cap["end"][ind]
# TODO: May need to be improved for edge cases.
# expand the min time.
if end - start < self.min_time:
diff = self.min_time - end + start
start = max(0, start - diff / 2)
end = start + self.min_time
return words, int(start), int(end)
def _find_nearest_candidates(self, caption, ind):
"""find the range of the clips."""
start, end = ind, ind
#diff = caption["end"][end] - caption["start"][start]
n_candidate = 1
while n_candidate < self.num_candidates:
# the first clip
if start == 0:
return 0
# we add () in the following condition to fix the bug.
elif end == (len(caption["start"]) - 1):
return start - (self.num_candidates - n_candidate)
elif (caption["end"][end] - caption["start"][start - 1]) < (
caption["end"][end + 1] - caption["start"][start]
):
start -= 1
else:
end += 1
n_candidate += 1
return start
class PKLJSONStrTextProcessor(TextProcessor):
"""`caption.json` from howto100m are preprocessed as a
dict `[video_id, json_str]`.
Json parsing tokenization are conducted on-the-fly and cached into dict.
"""
def __init__(self, config, max_clip_text_len=96):
print("[Warning] PKLJSONStrTextProcessor is slow for num_workers > 0.")
self.caption_pkl_path = str(config.caption_pkl_path)
with open(self.caption_pkl_path, "rb") as fd:
self.data = pickle.load(fd)
self.max_clip_text_len = max_clip_text_len
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
str(config.bert_name), use_fast=config.use_fast
)
def __call__(self, video_id):
caption = self.data[video_id]
if isinstance(caption, str):
import json
caption = json.loads(caption)
cap = []
for clip_idx, text_clip in enumerate(caption["text"]):
clip_ids = []
if isinstance(text_clip, str):
clip_ids = self.tokenizer(
text_clip[: self.max_clip_text_len],
add_special_tokens=False
)["input_ids"]
cap.append(clip_ids)
caption["cap"] = cap
caption.pop("text") # save space.
self.data[video_id] = caption
return caption
|