File size: 8,834 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import random
import json
import pickle
from tqdm import tqdm
import os
import numpy as np


class CaptionDedupProcessor(object):
    """remove overlapping of caption sentences(clip).
    Some statistics:
    caption:
    {'t_clip_len': 246.6448431320854,
    'video_len': 281.09174795676245,
    'clip_tps': 0.8841283727427481,
    'video_tps': 0.7821156477732097,
    'min_clip_len': 0.0,
    'max_clip_len': 398.3,
    'mean_clip_len': 3.196580003006861,
    'num_clip': 77.15897706301081}

    raw_caption:
    {'t_clip_len': 238.95908778424115,
    'video_len': 267.5914859862507,
    'clip_tps': 2.4941363624267963,
    'video_tps': 2.258989769647173,
    'min_clip_len': 0.0,
    'max_clip_len': 398.3,
    'mean_clip_len': 3.0537954186814265,
    'num_clip': 78.24986779481756}
    """

    def __init__(self, pkl_file):
        with open(pkl_file, "rb") as fd:
            self.data = pickle.load(fd)
        self.stat = {
            "t_clip_len": [],
            "video_len": [],
            "clip_tps": [],
            "video_tps": [],
            "clip_len": [],
        }

    def __call__(self):
        for idx, video_id in enumerate(tqdm(self.data)):
            caption = json.loads(self.data[video_id])
            caption = self._dedup(caption)
            if idx < 4096:  # for the first 4096 examples, compute the statistics.
                self.save_stat(video_id, caption)
            self.data[video_id] = json.dumps(caption)
        self.print_stat()

    def single(self, video_id):
        caption = json.loads(self.data[video_id])
        for clip_idx, (start, end, text) in enumerate(
            zip(caption["start"], caption["end"], caption["text"])
        ):
            print(start, end, text)
        print("@" * 100)
        caption = self._dedup(caption)
        for clip_idx, (start, end, text) in enumerate(
            zip(caption["start"], caption["end"], caption["text"])
        ):
            print(start, end, text)
        print("#" * 100)
        self.save_stat(video_id, caption)
        self.print_stat()

    def finalize(self, tgt_fn):
        with open(tgt_fn, "wb") as fw:
            pickle.dump(self.data, fw, pickle.HIGHEST_PROTOCOL)

    def save_stat(self, video_id, caption):
        video_fn = os.path.join(
            "data/feat/feat_how2_s3d", video_id + ".npy"
        )
        if os.path.isfile(video_fn):
            with open(video_fn, "rb", 1) as fr:  # 24 is the buffer size. buffered
                version = np.lib.format.read_magic(fr)
                shape, fortran, dtype = np.lib.format._read_array_header(fr, version)
                video_len = shape[0]

            t_clip_len = 0.0
            t_tokens = 0
            for idx, (start, end, text) in enumerate(
                zip(caption["start"], caption["end"], caption["text"])
            ):
                clip_len = (
                    (end - max(caption["end"][idx - 1], start))
                    if idx > 0
                    else end - start
                )
                t_clip_len += clip_len
                t_tokens += len(text.split(" "))
                self.stat["clip_len"].append(clip_len)
            self.stat["t_clip_len"].append(t_clip_len)
            self.stat["video_len"].append(video_len)
            self.stat["clip_tps"].append(t_tokens / t_clip_len)
            self.stat["video_tps"].append(t_tokens / video_len)

    def print_stat(self):
        result = {
            "t_clip_len": np.mean(self.stat["t_clip_len"]),
            "video_len": np.mean(self.stat["video_len"]),
            "clip_tps": np.mean(self.stat["clip_tps"]),
            "video_tps": np.mean(self.stat["video_tps"]),
            "min_clip_len": min(self.stat["clip_len"]),
            "max_clip_len": max(self.stat["clip_len"]),
            "mean_clip_len": np.mean(self.stat["clip_len"]),
            "num_clip": len(self.stat["clip_len"]) / len(self.stat["video_tps"]),
        }
        print(result)

    def _dedup(self, caption):
        def random_merge(end_idx, start, end, text, starts, ends, texts):
            if random.random() > 0.5:
                # print(clip_idx, "[PARTIAL INTO PREV]", end_idx)
                # overlapped part goes to the end of previous.
                ends[-1] = max(ends[-1], start)  # ?
                rest_text = text[end_idx:].strip()
                if rest_text:
                    starts.append(max(ends[-1], start))
                    ends.append(max(end, starts[-1]))
                    texts.append(rest_text)
            else:  # goes to the beginning of the current.
                # strip the previous.
                left_text = texts[-1][:-end_idx].strip()
                if left_text:
                    # print(clip_idx, "[PREV PARTIAL INTO CUR]", end_idx)
                    ends[-1] = min(ends[-1], start)
                    texts[-1] = left_text
                else:
                    # print(clip_idx, "[PREV LEFT NOTHING ALL INTO CUR]", end_idx)
                    starts.pop(-1)
                    ends.pop(-1)
                    texts.pop(-1)
                starts.append(start)
                ends.append(end)
                texts.append(text)

        starts, ends, texts = [], [], []
        for clip_idx, (start, end, text) in enumerate(
            zip(caption["start"], caption["end"], caption["text"])
        ):
            if not isinstance(text, str):
                continue
            text = text.replace("\n", " ").strip()
            if len(text) == 0:
                continue
            starts.append(start)
            ends.append(end)
            texts.append(text)
            break

        for clip_idx, (start, end, text) in enumerate(
            zip(
                caption["start"][clip_idx + 1:],
                caption["end"][clip_idx + 1:],
                caption["text"][clip_idx + 1:],
            )
        ):
            if not isinstance(text, str):
                continue
            text = text.replace("\n", " ").strip()
            if len(text) == 0:
                continue

            # print(clip_idx, texts[-5:])
            # print(clip_idx, start, end, text)
            if texts[-1].endswith(text):  # subset of prev caption -> merge
                # print(clip_idx, "[MERGE INTO PREV]")
                ends[-1] = max(ends[-1], end)
            elif text.startswith(texts[-1]):  # superset of prev caption -> merge
                # print(clip_idx, "[PREV MERGE INTO CUR]")
                texts[-1] = text
                starts[-1] = min(starts[-1], start)
                ends[-1] = max(ends[-1], end)
            else:  # overlapping or non-overlapping.
                for end_idx in range(1, len(text) + 1):
                    if texts[-1].endswith(text[:end_idx]):
                        random_merge(end_idx, start, end, text, starts, ends, texts)
                        break
                else:
                    starts.append(start)
                    ends.append(end)
                    texts.append(text)

            assert (ends[-1] + 0.001) >= starts[-1] and len(
                texts[-1]
            ) > 0, "{} {} {} <- {} {} {}, {} {} {}".format(
                str(starts[-1]),
                str(ends[-1]),
                texts[-1],
                caption["start"][clip_idx - 1],
                caption["end"][clip_idx - 1],
                caption["text"][clip_idx - 1],
                str(start),
                str(end),
                text,
            )

        return {"start": starts, "end": ends, "text": texts}


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="dedup how2 caption")
    parser.add_argument('--how2dir', default="data/how2")
    args = parser.parse_args()

    raw_caption_json = os.path.join(args.how2dir, "raw_caption.json")
    raw_caption_pickle = os.path.join(args.how2dir, "raw_caption.pkl")
    raw_caption_dedup_pickle = os.path.join(args.how2dir, "raw_caption_dedup.pkl")

    def convert_to_pickle(src_fn, tgt_fn):
        with open(src_fn) as fd:
            captions = json.load(fd)

        for video_id in captions:
            captions[video_id] = json.dumps(captions[video_id])

        with open(tgt_fn, "wb") as fw:
            pickle.dump(captions, fw, pickle.HIGHEST_PROTOCOL)

    if not os.path.isfile(raw_caption_pickle):
        convert_to_pickle(raw_caption_json, raw_caption_pickle)

    deduper = CaptionDedupProcessor(raw_caption_pickle)
    deduper()
    deduper.finalize(raw_caption_dedup_pickle)

    """
    # demo
    deduper = CaptionDedupProcessor("data/how2/raw_caption.pkl")
    deduper.single("HfIeQ9pzL5U")
    """