File size: 5,267 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


import logging
import os
import sys

import numpy as np
import torch
import torch.nn.functional as F

from .. import FairseqDataset


logger = logging.getLogger(__name__)


class RawAudioDataset(FairseqDataset):
    def __init__(
        self,
        sample_rate,
        max_sample_size=None,
        min_sample_size=0,
        shuffle=True,
        pad=False,
        normalize=False,
    ):
        super().__init__()

        self.sample_rate = sample_rate
        self.sizes = []
        self.max_sample_size = (
            max_sample_size if max_sample_size is not None else sys.maxsize
        )
        self.min_sample_size = min_sample_size
        self.pad = pad
        self.shuffle = shuffle
        self.normalize = normalize

    def __getitem__(self, index):
        raise NotImplementedError()

    def __len__(self):
        return len(self.sizes)

    def postprocess(self, feats, curr_sample_rate):
        if feats.dim() == 2:
            feats = feats.mean(-1)

        if curr_sample_rate != self.sample_rate:
            raise Exception(f"sample rate: {curr_sample_rate}, need {self.sample_rate}")

        assert feats.dim() == 1, feats.dim()

        if self.normalize:
            with torch.no_grad():
                feats = F.layer_norm(feats, feats.shape)
        return feats

    def crop_to_max_size(self, wav, target_size):
        size = len(wav)
        diff = size - target_size
        if diff <= 0:
            return wav

        start = np.random.randint(0, diff + 1)
        end = size - diff + start
        return wav[start:end]

    def collater(self, samples):
        samples = [s for s in samples if s["source"] is not None]
        if len(samples) == 0:
            return {}

        sources = [s["source"] for s in samples]
        sizes = [len(s) for s in sources]

        if self.pad:
            target_size = min(max(sizes), self.max_sample_size)
        else:
            target_size = min(min(sizes), self.max_sample_size)

        collated_sources = sources[0].new_zeros(len(sources), target_size)
        padding_mask = (
            torch.BoolTensor(collated_sources.shape).fill_(False) if self.pad else None
        )
        for i, (source, size) in enumerate(zip(sources, sizes)):
            diff = size - target_size
            if diff == 0:
                collated_sources[i] = source
            elif diff < 0:
                assert self.pad
                collated_sources[i] = torch.cat(
                    [source, source.new_full((-diff,), 0.0)]
                )
                padding_mask[i, diff:] = True
            else:
                collated_sources[i] = self.crop_to_max_size(source, target_size)

        input = {"source": collated_sources}
        if self.pad:
            input["padding_mask"] = padding_mask
        return {"id": torch.LongTensor([s["id"] for s in samples]), "net_input": input}

    def num_tokens(self, index):
        return self.size(index)

    def size(self, index):
        """Return an example's size as a float or tuple. This value is used when
        filtering a dataset with ``--max-positions``."""
        if self.pad:
            return self.sizes[index]
        return min(self.sizes[index], self.max_sample_size)

    def ordered_indices(self):
        """Return an ordered list of indices. Batches will be constructed based
        on this order."""

        if self.shuffle:
            order = [np.random.permutation(len(self))]
        else:
            order = [np.arange(len(self))]

        order.append(self.sizes)
        return np.lexsort(order)[::-1]


class FileAudioDataset(RawAudioDataset):
    def __init__(
        self,
        manifest_path,
        sample_rate,
        max_sample_size=None,
        min_sample_size=0,
        shuffle=True,
        pad=False,
        normalize=False,
    ):
        super().__init__(
            sample_rate=sample_rate,
            max_sample_size=max_sample_size,
            min_sample_size=min_sample_size,
            shuffle=shuffle,
            pad=pad,
            normalize=normalize,
        )

        self.fnames = []
        self.line_inds = set()

        skipped = 0
        with open(manifest_path, "r") as f:
            self.root_dir = f.readline().strip()
            for i, line in enumerate(f):
                items = line.strip().split("\t")
                assert len(items) == 2, line
                sz = int(items[1])
                if min_sample_size is not None and sz < min_sample_size:
                    skipped += 1
                    continue
                self.fnames.append(items[0])
                self.line_inds.add(i)
                self.sizes.append(sz)
        logger.info(f"loaded {len(self.fnames)}, skipped {skipped} samples")

    def __getitem__(self, index):
        import soundfile as sf

        fname = os.path.join(self.root_dir, self.fnames[index])
        wav, curr_sample_rate = sf.read(fname)
        feats = torch.from_numpy(wav).float()
        feats = self.postprocess(feats, curr_sample_rate)
        return {"id": index, "source": feats}