File size: 1,502 Bytes
b816ac7
 
dbadeb1
1dc34dc
b816ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from unilm.dit.object_detection.ditod import add_vit_config
import torch
import cv2
from detectron2.config import CfgNode as CN
from detectron2.config import get_cfg
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor
import gradio as gr

cfg = get_cfg()
add_vit_config(cfg)
cfg.merge_from_file("cascade_dit_base.yml")

cfg.MODEL.WEIGHTS = "publaynet_dit-b_cascade.pth"

cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

predictor = DefaultPredictor(cfg)


def analyze_image(img):
    md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
    if cfg.DATASETS.TEST[0] == 'icdar2019_test':
        md.set(thing_classes=["table"])
    else:
        md.set(thing_classes=["text", "title", "list", "table", "figure"])

    output = predictor(img)["instances"]
    v = Visualizer(img[:, :, ::-1],
                   md,
                   scale=1.0,
                   instance_mode=ColorMode.SEGMENTATION)
    result = v.draw_instance_predictions(output.to("cpu"))
    result_image = result.get_image()[:, :, ::-1]

    return result_image


title = " Table Detection with DiT"
css = ".output-image, .input-image, .image-preview {height: 600px !important}"

iface = gr.Interface(
    fn=analyze_image,
    inputs=[gr.Image(type="numpy", label="document image")],
    outputs=[gr.Image(type="numpy", label="detected tables")],
    title=title,

    css=css,
)
iface.launch(debug=True, share=True)