Tzetha commited on
Commit
349f574
·
verified ·
1 Parent(s): f97dddb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
2
  import pandas as pd
3
  import numpy as np
4
  import pickle
5
- from sklearn.model_selection import train_test_split
6
  from sklearn.linear_model import LinearRegression
7
  from sklearn.preprocessing import LabelEncoder
8
 
@@ -20,11 +19,16 @@ def preprocess_data(df):
20
  label_encoders[column] = le
21
  return df, label_encoders
22
 
23
- # Train the model
24
  def train_model(df):
25
- X = df[["year", "mileage", "brand", "model", "fuel_type"]]
26
- y = df["price"]
27
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
 
 
 
 
28
  model = LinearRegression()
29
  model.fit(X_train, y_train)
30
  return model
 
2
  import pandas as pd
3
  import numpy as np
4
  import pickle
 
5
  from sklearn.linear_model import LinearRegression
6
  from sklearn.preprocessing import LabelEncoder
7
 
 
19
  label_encoders[column] = le
20
  return df, label_encoders
21
 
22
+ # Train the model (Manual Data Split)
23
  def train_model(df):
24
+ X = df[["year", "mileage", "brand", "model", "fuel_type"]].values
25
+ y = df["price"].values
26
+
27
+ # Manual 80-20 split
28
+ split_index = int(0.8 * len(X)) # 80% for training, 20% for testing
29
+ X_train, X_test = X[:split_index], X[split_index:]
30
+ y_train, y_test = y[:split_index], y[split_index:]
31
+
32
  model = LinearRegression()
33
  model.fit(X_train, y_train)
34
  return model