Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import pickle
|
5 |
-
from sklearn.model_selection import train_test_split
|
6 |
from sklearn.linear_model import LinearRegression
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
|
@@ -20,11 +19,16 @@ def preprocess_data(df):
|
|
20 |
label_encoders[column] = le
|
21 |
return df, label_encoders
|
22 |
|
23 |
-
# Train the model
|
24 |
def train_model(df):
|
25 |
-
X = df[["year", "mileage", "brand", "model", "fuel_type"]]
|
26 |
-
y = df["price"]
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
model = LinearRegression()
|
29 |
model.fit(X_train, y_train)
|
30 |
return model
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import pickle
|
|
|
5 |
from sklearn.linear_model import LinearRegression
|
6 |
from sklearn.preprocessing import LabelEncoder
|
7 |
|
|
|
19 |
label_encoders[column] = le
|
20 |
return df, label_encoders
|
21 |
|
22 |
+
# Train the model (Manual Data Split)
|
23 |
def train_model(df):
|
24 |
+
X = df[["year", "mileage", "brand", "model", "fuel_type"]].values
|
25 |
+
y = df["price"].values
|
26 |
+
|
27 |
+
# Manual 80-20 split
|
28 |
+
split_index = int(0.8 * len(X)) # 80% for training, 20% for testing
|
29 |
+
X_train, X_test = X[:split_index], X[split_index:]
|
30 |
+
y_train, y_test = y[:split_index], y[split_index:]
|
31 |
+
|
32 |
model = LinearRegression()
|
33 |
model.fit(X_train, y_train)
|
34 |
return model
|