Midterm_Project / app.py
Tzetha's picture
Edited app&setup
01472b4
raw
history blame
7.73 kB
import streamlit as st
from PIL import Image
from pytesseract import pytesseract
import PyPDF2
import enum
import os
import re
from collections import defaultdict
import folium
from streamlit_folium import st_folium
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut
import wikipedia
from transformers import pipeline
from openai import OpenAI
# NVIDIA OpenAI API Setup
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key="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" # Replace with actual API key
)
# Load Named Entity Recognition (NER) Model
nlp = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
st.set_page_config(page_title="OCR & Historical Analysis", page_icon="๐Ÿ“œ", layout="wide")
# Custom Styling
def style_text(text):
return f"""
<div style='padding:10px;border-radius:10px;
background-color:#e0e0e0;
color:#333;
font-weight:500;
font-size:16px;'>
{text}
</div>
"""
def find_related_documents(query):
try:
search_results = wikipedia.search(query, results=5)
links = [wikipedia.page(result).url for result in search_results]
return links
except Exception as e:
return [f"Error retrieving related documents: {str(e)}"]
def geocode_location(location):
geolocator = Nominatim(user_agent="streamlit_app")
try:
loc = geolocator.geocode(location, timeout=10)
return (loc.latitude, loc.longitude) if loc else None
except GeocoderTimedOut:
return None
def generate_historical_context_nvidia(text):
"""Use NVIDIA OpenAI API to generate a structured, summarized historical context."""
prompt_analysis = f"""
Analyze the following text and provide a historical context. Identify:
- Key historical events
- Significant figures involved
- The broader historical significance
Text: {text}
Provide a detailed response.
"""
prompt_summary = """
Summarize the historical context provided above in a concise and structured format:
- Limit to 5 bullet points
- Each bullet point should be under 100 words
- Avoid unnecessary explanations or preambleโ€”return only the summary
"""
try:
# Step 1: Generate Detailed Historical Context
completion = client.chat.completions.create(
model="deepseek-ai/deepseek-r1",
messages=[
{"role": "system", "content": "You are a historian providing detailed historical insights."},
{"role": "user", "content": prompt_analysis}
],
temperature=0.4,
top_p=0.9,
max_tokens=4096,
stream=False
)
detailed_response = completion.choices[0].message.content.strip()
# Step 2: Summarize the Historical Context **without Monologue**
summary_completion = client.chat.completions.create(
model="deepseek-ai/deepseek-r1",
messages=[
{"role": "system", "content": "You are an expert summarizer."},
{"role": "user", "content": f"{detailed_response}\n\n{prompt_summary}"}
],
temperature=0.4,
top_p=0.9,
max_tokens=2048,
stream=False
)
# Extract only the structured summary
summary_response = summary_completion.choices[0].message.content.strip()
# Remove AI-generated explanations or redundant preamble
clean_summary = re.sub(r"^.*?\n\n", "", summary_response, flags=re.DOTALL)
return clean_summary if clean_summary else "No historical context found."
except Exception as e:
return f"Error retrieving AI-generated historical context: {str(e)}"
class OS(enum.Enum):
Mac = 0
Windows = 1
class Languages(enum.Enum):
English = "eng"
Filipino = "fil"
Spanish = "spa"
class ImageReader:
def __init__(self, os):
if os == OS.Windows:
pytesseract.tesseract_cmd = '/usr/bin/tesseract'
def extract_text(self, image: Image, lang: Languages):
extracted_text = pytesseract.image_to_string(image, lang=lang.value)
return ' '.join(extracted_text.split())
def extract_text_from_pdf(self, pdf_file, lang: Languages):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = "".join(page.extract_text() or "" for page in pdf_reader.pages)
return text
def extract_key_details(self, text):
details = {"dates": set(), "names": set(), "locations": set()}
date_pattern = r'\b(?:\d{1,2}[/\-]\d{1,2}[/\-]\d{2,4}|\d{4})\b'
details['dates'] = set(re.findall(date_pattern, text))
entities = nlp(text)
for entity in entities:
if "PER" in entity['entity']:
details['names'].add(entity['word'])
elif "LOC" in entity['entity']:
details['locations'].add(entity['word'])
return details
# UI Layout
st.title("๐Ÿ“œ OCR & Historical Context Analyzer")
st.markdown("Extract text from images and PDFs, analyze named entities, and retrieve historical context.")
col1, col2 = st.columns([1, 2])
with col1:
selected_os = st.selectbox("๐Ÿ–ฅ๏ธ Select your OS", [OS.Windows, OS.Mac], format_func=lambda x: x.name)
selected_lang = st.selectbox("๐ŸŒ Select language", list(Languages), format_func=lambda x: x.name)
uploaded_file = st.file_uploader("๐Ÿ“‚ Upload an image or PDF", type=["png", "jpg", "jpeg", "pdf"])
if uploaded_file:
ir = ImageReader(selected_os)
extracted_text = ""
if uploaded_file.type in ["image/png", "image/jpeg"]:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
extracted_text = ir.extract_text(image, selected_lang)
else:
extracted_text = ir.extract_text_from_pdf(uploaded_file, selected_lang)
st.markdown("### ๐Ÿ“ Extracted Text:")
st.markdown(style_text(extracted_text), unsafe_allow_html=True)
key_details = ir.extract_key_details(extracted_text)
st.markdown("### ๐Ÿ” Extracted Key Details")
st.write(f"**๐Ÿ“… Dates:** {', '.join(key_details['dates']) if key_details['dates'] else 'None found'}")
st.write(f"**๐Ÿ‘ค Names:** {', '.join(key_details['names']) if key_details['names'] else 'None found'}")
st.write(f"**๐Ÿ“ Locations:** {', '.join(key_details['locations']) if key_details['locations'] else 'None found'}")
combined_terms = ' '.join(key_details['dates'].union(key_details['locations']).union(key_details['names']))
historical_context = generate_historical_context_nvidia(combined_terms)
st.markdown("### ๐Ÿ›๏ธ Historical Context")
st.markdown(style_text(historical_context), unsafe_allow_html=True)
st.markdown("### ๐ŸŒ Search the Web")
search_query = st.text_input("Enter a keyword or phrase:")
if search_query:
search_results = generate_historical_context_nvidia(search_query)
st.markdown(style_text(search_results), unsafe_allow_html=True)
related_docs = find_related_documents(combined_terms)
st.markdown("### ๐Ÿ“š Related Historical Documents")
for link in related_docs:
st.markdown(f"[๐Ÿ”— {link}]({link})")
st.markdown("### ๐Ÿ—บ๏ธ Map of Key Locations")
map_center = [10.0, 10.0]
map_obj = folium.Map(location=map_center, zoom_start=2)
for loc in key_details['locations']:
coords = geocode_location(loc)
if coords:
folium.Marker(coords, popup=loc).add_to(map_obj)
st_folium(map_obj, width=700, height=500)