File size: 7,899 Bytes
79e6c24
 
 
 
 
 
ca6f1c1
 
 
 
79e6c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01472b4
79e6c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import streamlit as st
from PIL import Image
from pytesseract import pytesseract
import PyPDF2
import enum
import os
# Install Tesseract at runtime
if not os.path.exists("/usr/bin/tesseract"):
    os.system("apt-get update && apt-get install -y tesseract-ocr libtesseract-dev")
    
import re
from collections import defaultdict
import folium
from streamlit_folium import st_folium
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut
import wikipedia
from transformers import pipeline
from openai import OpenAI

# NVIDIA OpenAI API Setup
client = OpenAI(
    base_url="https://integrate.api.nvidia.com/v1",
    api_key="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"  # Replace with actual API key
)

# Load Named Entity Recognition (NER) Model
nlp = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")

st.set_page_config(page_title="OCR & Historical Analysis", page_icon="πŸ“œ", layout="wide")

# Custom Styling
def style_text(text):
    return f"""
    <div style='padding:10px;border-radius:10px;
                background-color:#e0e0e0;
                color:#333;
                font-weight:500;
                font-size:16px;'>
        {text}
    </div>
    """

def find_related_documents(query):
    try:
        search_results = wikipedia.search(query, results=5)
        links = [wikipedia.page(result).url for result in search_results]
        return links
    except Exception as e:
        return [f"Error retrieving related documents: {str(e)}"]

def geocode_location(location):
    geolocator = Nominatim(user_agent="streamlit_app")
    try:
        loc = geolocator.geocode(location, timeout=10)
        return (loc.latitude, loc.longitude) if loc else None
    except GeocoderTimedOut:
        return None

def generate_historical_context_nvidia(text):
    """Use NVIDIA OpenAI API to generate a structured, summarized historical context."""

    prompt_analysis = f"""
    Analyze the following text and provide a historical context. Identify:
    - Key historical events
    - Significant figures involved
    - The broader historical significance

    Text: {text}

    Provide a detailed response.
    """

    prompt_summary = """
    Summarize the historical context provided above in a concise and structured format:
    - Limit to 5 bullet points
    - Each bullet point should be under 100 words
    - Avoid unnecessary explanations or preambleβ€”return only the summary
    """

    try:
        # Step 1: Generate Detailed Historical Context
        completion = client.chat.completions.create(
            model="deepseek-ai/deepseek-r1",
            messages=[
                {"role": "system", "content": "You are a historian providing detailed historical insights."},
                {"role": "user", "content": prompt_analysis}
            ],
            temperature=0.4,
            top_p=0.9,
            max_tokens=4096,
            stream=False
        )
        detailed_response = completion.choices[0].message.content.strip()

        # Step 2: Summarize the Historical Context **without Monologue**
        summary_completion = client.chat.completions.create(
            model="deepseek-ai/deepseek-r1",
            messages=[
                {"role": "system", "content": "You are an expert summarizer."},
                {"role": "user", "content": f"{detailed_response}\n\n{prompt_summary}"}
            ],
            temperature=0.4,
            top_p=0.9,
            max_tokens=2048,
            stream=False
        )
        
        # Extract only the structured summary
        summary_response = summary_completion.choices[0].message.content.strip()
        
        # Remove AI-generated explanations or redundant preamble
        clean_summary = re.sub(r"^.*?\n\n", "", summary_response, flags=re.DOTALL)

        return clean_summary if clean_summary else "No historical context found."

    except Exception as e:
        return f"Error retrieving AI-generated historical context: {str(e)}"

    
class OS(enum.Enum):
    Mac = 0
    Windows = 1

class Languages(enum.Enum):
    English = "eng"
    Filipino = "fil"
    Spanish = "spa"

class ImageReader:
    def __init__(self, os):
        if os == OS.Windows:
            pytesseract.tesseract_cmd = '/usr/bin/tesseract'

    def extract_text(self, image: Image, lang: Languages):
        extracted_text = pytesseract.image_to_string(image, lang=lang.value)
        return ' '.join(extracted_text.split())

    def extract_text_from_pdf(self, pdf_file, lang: Languages):
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = "".join(page.extract_text() or "" for page in pdf_reader.pages)
        return text

    def extract_key_details(self, text):
        details = {"dates": set(), "names": set(), "locations": set()}
        date_pattern = r'\b(?:\d{1,2}[/\-]\d{1,2}[/\-]\d{2,4}|\d{4})\b'
        details['dates'] = set(re.findall(date_pattern, text))
        entities = nlp(text)
        
        for entity in entities:
            if "PER" in entity['entity']:
                details['names'].add(entity['word'])
            elif "LOC" in entity['entity']:
                details['locations'].add(entity['word'])
        
        return details

# UI Layout
st.title("πŸ“œ OCR & Historical Context Analyzer")
st.markdown("Extract text from images and PDFs, analyze named entities, and retrieve historical context.")

col1, col2 = st.columns([1, 2])

with col1:
    selected_os = st.selectbox("πŸ–₯️ Select your OS", [OS.Windows, OS.Mac], format_func=lambda x: x.name)
    selected_lang = st.selectbox("🌍 Select language", list(Languages), format_func=lambda x: x.name)
    uploaded_file = st.file_uploader("πŸ“‚ Upload an image or PDF", type=["png", "jpg", "jpeg", "pdf"])

if uploaded_file:
    ir = ImageReader(selected_os)
    extracted_text = ""
    if uploaded_file.type in ["image/png", "image/jpeg"]:
        image = Image.open(uploaded_file)
        st.image(image, caption="Uploaded Image", use_column_width=True)
        extracted_text = ir.extract_text(image, selected_lang)
    else:
        extracted_text = ir.extract_text_from_pdf(uploaded_file, selected_lang)

    st.markdown("### πŸ“ Extracted Text:")
    st.markdown(style_text(extracted_text), unsafe_allow_html=True)

    key_details = ir.extract_key_details(extracted_text)
    st.markdown("### πŸ” Extracted Key Details")
    st.write(f"**πŸ“… Dates:** {', '.join(key_details['dates']) if key_details['dates'] else 'None found'}")
    st.write(f"**πŸ‘€ Names:** {', '.join(key_details['names']) if key_details['names'] else 'None found'}")
    st.write(f"**πŸ“ Locations:** {', '.join(key_details['locations']) if key_details['locations'] else 'None found'}")
    
    combined_terms = ' '.join(key_details['dates'].union(key_details['locations']).union(key_details['names']))
    historical_context = generate_historical_context_nvidia(combined_terms)
    st.markdown("### πŸ›οΈ Historical Context")
    st.markdown(style_text(historical_context), unsafe_allow_html=True)
    
    st.markdown("### 🌐 Search the Web")
    search_query = st.text_input("Enter a keyword or phrase:")
    if search_query:
        search_results = generate_historical_context_nvidia(search_query)
        st.markdown(style_text(search_results), unsafe_allow_html=True)
    
    related_docs = find_related_documents(combined_terms)
    st.markdown("### πŸ“š Related Historical Documents")
    for link in related_docs:
        st.markdown(f"[πŸ”— {link}]({link})")
    
    st.markdown("### πŸ—ΊοΈ Map of Key Locations")
    map_center = [10.0, 10.0]
    map_obj = folium.Map(location=map_center, zoom_start=2)
    
    for loc in key_details['locations']:
        coords = geocode_location(loc)
        if coords:
            folium.Marker(coords, popup=loc).add_to(map_obj)
    
    st_folium(map_obj, width=700, height=500)