Spaces:
Running
Running
File size: 7,899 Bytes
79e6c24 ca6f1c1 79e6c24 01472b4 79e6c24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import streamlit as st
from PIL import Image
from pytesseract import pytesseract
import PyPDF2
import enum
import os
# Install Tesseract at runtime
if not os.path.exists("/usr/bin/tesseract"):
os.system("apt-get update && apt-get install -y tesseract-ocr libtesseract-dev")
import re
from collections import defaultdict
import folium
from streamlit_folium import st_folium
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut
import wikipedia
from transformers import pipeline
from openai import OpenAI
# NVIDIA OpenAI API Setup
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key="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" # Replace with actual API key
)
# Load Named Entity Recognition (NER) Model
nlp = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
st.set_page_config(page_title="OCR & Historical Analysis", page_icon="π", layout="wide")
# Custom Styling
def style_text(text):
return f"""
<div style='padding:10px;border-radius:10px;
background-color:#e0e0e0;
color:#333;
font-weight:500;
font-size:16px;'>
{text}
</div>
"""
def find_related_documents(query):
try:
search_results = wikipedia.search(query, results=5)
links = [wikipedia.page(result).url for result in search_results]
return links
except Exception as e:
return [f"Error retrieving related documents: {str(e)}"]
def geocode_location(location):
geolocator = Nominatim(user_agent="streamlit_app")
try:
loc = geolocator.geocode(location, timeout=10)
return (loc.latitude, loc.longitude) if loc else None
except GeocoderTimedOut:
return None
def generate_historical_context_nvidia(text):
"""Use NVIDIA OpenAI API to generate a structured, summarized historical context."""
prompt_analysis = f"""
Analyze the following text and provide a historical context. Identify:
- Key historical events
- Significant figures involved
- The broader historical significance
Text: {text}
Provide a detailed response.
"""
prompt_summary = """
Summarize the historical context provided above in a concise and structured format:
- Limit to 5 bullet points
- Each bullet point should be under 100 words
- Avoid unnecessary explanations or preambleβreturn only the summary
"""
try:
# Step 1: Generate Detailed Historical Context
completion = client.chat.completions.create(
model="deepseek-ai/deepseek-r1",
messages=[
{"role": "system", "content": "You are a historian providing detailed historical insights."},
{"role": "user", "content": prompt_analysis}
],
temperature=0.4,
top_p=0.9,
max_tokens=4096,
stream=False
)
detailed_response = completion.choices[0].message.content.strip()
# Step 2: Summarize the Historical Context **without Monologue**
summary_completion = client.chat.completions.create(
model="deepseek-ai/deepseek-r1",
messages=[
{"role": "system", "content": "You are an expert summarizer."},
{"role": "user", "content": f"{detailed_response}\n\n{prompt_summary}"}
],
temperature=0.4,
top_p=0.9,
max_tokens=2048,
stream=False
)
# Extract only the structured summary
summary_response = summary_completion.choices[0].message.content.strip()
# Remove AI-generated explanations or redundant preamble
clean_summary = re.sub(r"^.*?\n\n", "", summary_response, flags=re.DOTALL)
return clean_summary if clean_summary else "No historical context found."
except Exception as e:
return f"Error retrieving AI-generated historical context: {str(e)}"
class OS(enum.Enum):
Mac = 0
Windows = 1
class Languages(enum.Enum):
English = "eng"
Filipino = "fil"
Spanish = "spa"
class ImageReader:
def __init__(self, os):
if os == OS.Windows:
pytesseract.tesseract_cmd = '/usr/bin/tesseract'
def extract_text(self, image: Image, lang: Languages):
extracted_text = pytesseract.image_to_string(image, lang=lang.value)
return ' '.join(extracted_text.split())
def extract_text_from_pdf(self, pdf_file, lang: Languages):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = "".join(page.extract_text() or "" for page in pdf_reader.pages)
return text
def extract_key_details(self, text):
details = {"dates": set(), "names": set(), "locations": set()}
date_pattern = r'\b(?:\d{1,2}[/\-]\d{1,2}[/\-]\d{2,4}|\d{4})\b'
details['dates'] = set(re.findall(date_pattern, text))
entities = nlp(text)
for entity in entities:
if "PER" in entity['entity']:
details['names'].add(entity['word'])
elif "LOC" in entity['entity']:
details['locations'].add(entity['word'])
return details
# UI Layout
st.title("π OCR & Historical Context Analyzer")
st.markdown("Extract text from images and PDFs, analyze named entities, and retrieve historical context.")
col1, col2 = st.columns([1, 2])
with col1:
selected_os = st.selectbox("π₯οΈ Select your OS", [OS.Windows, OS.Mac], format_func=lambda x: x.name)
selected_lang = st.selectbox("π Select language", list(Languages), format_func=lambda x: x.name)
uploaded_file = st.file_uploader("π Upload an image or PDF", type=["png", "jpg", "jpeg", "pdf"])
if uploaded_file:
ir = ImageReader(selected_os)
extracted_text = ""
if uploaded_file.type in ["image/png", "image/jpeg"]:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
extracted_text = ir.extract_text(image, selected_lang)
else:
extracted_text = ir.extract_text_from_pdf(uploaded_file, selected_lang)
st.markdown("### π Extracted Text:")
st.markdown(style_text(extracted_text), unsafe_allow_html=True)
key_details = ir.extract_key_details(extracted_text)
st.markdown("### π Extracted Key Details")
st.write(f"**π
Dates:** {', '.join(key_details['dates']) if key_details['dates'] else 'None found'}")
st.write(f"**π€ Names:** {', '.join(key_details['names']) if key_details['names'] else 'None found'}")
st.write(f"**π Locations:** {', '.join(key_details['locations']) if key_details['locations'] else 'None found'}")
combined_terms = ' '.join(key_details['dates'].union(key_details['locations']).union(key_details['names']))
historical_context = generate_historical_context_nvidia(combined_terms)
st.markdown("### ποΈ Historical Context")
st.markdown(style_text(historical_context), unsafe_allow_html=True)
st.markdown("### π Search the Web")
search_query = st.text_input("Enter a keyword or phrase:")
if search_query:
search_results = generate_historical_context_nvidia(search_query)
st.markdown(style_text(search_results), unsafe_allow_html=True)
related_docs = find_related_documents(combined_terms)
st.markdown("### π Related Historical Documents")
for link in related_docs:
st.markdown(f"[π {link}]({link})")
st.markdown("### πΊοΈ Map of Key Locations")
map_center = [10.0, 10.0]
map_obj = folium.Map(location=map_center, zoom_start=2)
for loc in key_details['locations']:
coords = geocode_location(loc)
if coords:
folium.Marker(coords, popup=loc).add_to(map_obj)
st_folium(map_obj, width=700, height=500) |