import streamlit as st
import numpy as np
import cv2
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from io import BytesIO
# Function to extract dominant colors
def extract_colors(image, num_colors):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pixels = image.reshape(-1, 3) # Reshape to 2D array
kmeans = KMeans(n_clusters=num_colors, n_init=10, random_state=42)
kmeans.fit(pixels)
colors = kmeans.cluster_centers_.astype(int)
return colors
# Function to display the color palette
def display_palette(colors):
fig, ax = plt.subplots(figsize=(8, 2))
ax.imshow([colors], aspect='auto')
ax.set_xticks([])
ax.set_yticks([])
st.pyplot(fig)
# Streamlit UI Design
st.set_page_config(page_title="Color Palette Generator", page_icon="🎨", layout="centered")
# Custom CSS for aesthetics
st.markdown(
"""
""",
unsafe_allow_html=True,
)
# Header Design
st.markdown("
🎨 K-Means Color Palette Generator
", unsafe_allow_html=True)
st.markdown("Upload an image and extract its dominant colors!
", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
num_colors = st.slider("Select Number of Colors", 2, 10, 5)
if uploaded_file is not None:
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
st.markdown("", unsafe_allow_html=True)
st.image(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Uploaded Image", use_column_width=True)
st.markdown("
", unsafe_allow_html=True)
colors = extract_colors(image, num_colors)
st.write("## 🎨 Extracted Color Palette")
display_palette(colors)
# Show color RGB values
st.write("## 🌈 RGB Values of Extracted Colors")
color_columns = st.columns(num_colors)
for i, color in enumerate(colors):
with color_columns[i]:
st.markdown(f"""""", unsafe_allow_html=True)
st.write(f"RGB({color[0]}, {color[1]}, {color[2]})")