Spaces:
Running
Running
Upload FIles
Browse files- app.py +105 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from sklearn.ensemble import IsolationForest
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
|
9 |
+
# Set page title and icon
|
10 |
+
st.set_page_config(page_title="Anomaly Detection App", page_icon="π")
|
11 |
+
|
12 |
+
# Custom CSS for better styling
|
13 |
+
st.markdown("""
|
14 |
+
<style>
|
15 |
+
.stButton>button {
|
16 |
+
background-color: #4CAF50;
|
17 |
+
color: white;
|
18 |
+
font-weight: bold;
|
19 |
+
border-radius: 5px;
|
20 |
+
padding: 10px 20px;
|
21 |
+
}
|
22 |
+
.stDownloadButton>button {
|
23 |
+
background-color: #008CBA;
|
24 |
+
color: white;
|
25 |
+
font-weight: bold;
|
26 |
+
border-radius: 5px;
|
27 |
+
padding: 10px 20px;
|
28 |
+
}
|
29 |
+
.stMarkdown h1 {
|
30 |
+
color: #4CAF50;
|
31 |
+
}
|
32 |
+
.stMarkdown h2 {
|
33 |
+
color: #008CBA;
|
34 |
+
}
|
35 |
+
</style>
|
36 |
+
""", unsafe_allow_html=True)
|
37 |
+
|
38 |
+
# Title of the app
|
39 |
+
st.title("π Anomaly Detection App")
|
40 |
+
st.write("""
|
41 |
+
This app uses the **Isolation Forest** algorithm to detect anomalies in your dataset.
|
42 |
+
Upload a CSV file, and the app will identify anomalies in the data.
|
43 |
+
""")
|
44 |
+
|
45 |
+
# Upload dataset
|
46 |
+
uploaded_file = st.file_uploader("Upload your dataset (CSV file)", type=["csv"])
|
47 |
+
|
48 |
+
if uploaded_file is not None:
|
49 |
+
# Load the dataset
|
50 |
+
df = pd.read_csv(uploaded_file)
|
51 |
+
|
52 |
+
# Show dataset preview
|
53 |
+
st.write("### Dataset Preview")
|
54 |
+
st.write(df.head())
|
55 |
+
|
56 |
+
# Select features for anomaly detection
|
57 |
+
st.write("### Select Features")
|
58 |
+
features = st.multiselect("Choose the features to use for anomaly detection", df.columns)
|
59 |
+
|
60 |
+
if features:
|
61 |
+
# Allow user to adjust contamination parameter
|
62 |
+
st.write("### Adjust Model Parameters")
|
63 |
+
contamination = st.slider("Contamination (proportion of anomalies)", 0.01, 0.5, 0.1, 0.01)
|
64 |
+
|
65 |
+
# Preprocess the data
|
66 |
+
scaler = StandardScaler()
|
67 |
+
df_scaled = scaler.fit_transform(df[features])
|
68 |
+
|
69 |
+
# Train the Isolation Forest model
|
70 |
+
with st.spinner("Training the model and detecting anomalies..."):
|
71 |
+
model = IsolationForest(n_estimators=100, contamination=contamination, random_state=42)
|
72 |
+
model.fit(df_scaled)
|
73 |
+
|
74 |
+
# Predict anomalies
|
75 |
+
predictions = model.predict(df_scaled)
|
76 |
+
df['anomaly'] = predictions # -1 for anomaly, 1 for normal
|
77 |
+
|
78 |
+
# Display results
|
79 |
+
st.write("### Anomaly Detection Results")
|
80 |
+
st.write(df)
|
81 |
+
|
82 |
+
# Filter and display only anomalies
|
83 |
+
anomalies = df[df['anomaly'] == -1]
|
84 |
+
st.write(f"### Detected Anomalies (Total: {len(anomalies)})")
|
85 |
+
st.write(anomalies)
|
86 |
+
|
87 |
+
# Visualize anomalies
|
88 |
+
st.write("### Visualize Anomalies")
|
89 |
+
if len(features) >= 2:
|
90 |
+
fig, ax = plt.subplots()
|
91 |
+
sns.scatterplot(data=df, x=features[0], y=features[1], hue='anomaly', palette={1: 'blue', -1: 'red'})
|
92 |
+
st.pyplot(fig)
|
93 |
+
else:
|
94 |
+
st.warning("Please select at least 2 features to visualize anomalies.")
|
95 |
+
|
96 |
+
# Download results as CSV
|
97 |
+
st.write("### Download Results")
|
98 |
+
st.download_button(
|
99 |
+
label="Download Results as CSV",
|
100 |
+
data=df.to_csv(index=False).encode('utf-8'),
|
101 |
+
file_name='anomaly_detection_results.csv',
|
102 |
+
mime='text/csv',
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
st.write("Please upload a CSV file to get started.")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
streamlit
|
3 |
+
pandas
|
4 |
+
numpy
|