import gradio as gr from transformers import pipeline import os # Initialize global pipeline ner_pipeline = None def load_healthcare_ner_pipeline(): """Load the Hugging Face pipeline for Healthcare NER.""" global ner_pipeline if ner_pipeline is None: ner_pipeline = pipeline( "token-classification", model="TypicaAI/HealthcareNER-Fr", aggregation_strategy="first" # Groups B- and I- tokens into entities ) return ner_pipeline def process_text(text): """Process input text and return highlighted entities.""" pipeline = load_healthcare_ner_pipeline() entities = pipeline(text) return {"text": text, "entities": entities} def log_demo_usage(text, num_entities): """Log demo usage for analytics.""" print(f"Processed text: {text[:50]}... | Entities found: {num_entities}") # Define the Gradio interface demo = gr.Interface( fn=process_text, inputs=gr.Textbox( label="Paste French medical text", placeholder="Le patient présente une hypertension artérielle...", lines=5 ), outputs=gr.HighlightedText(), #outputs=gr.HTML(label="Identified Medical Entities"), title="French Healthcare NER Demo | As featured in 'NLP on OCI'", description=""" 🔬 Live demo of the French Healthcare NER model built in Chapter 6 of the book 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition' 📚 Follow along with the book to build this exact model step-by-step 🏥 Perfect for medical text analysis, clinical studies, and healthcare compliance ⚡ Model Trained on Oracle Cloud Infrastructure (OCI) By [Hicham Assoudi] - AI Researcher (Ph.D.) • Oracle Consultant • Author """, examples=[ ["Le medecin donne des antibiotiques en cas d'infections des voies respiratoires."], ["Le médecin recommande des corticoïdes pour réduire l'inflammation dans les poumons."], ["Pour soulager les symptômes d'allergie, le médecin prescrit des antihistaminiques."], ["Pour gérer le diabète, le médecin prescrit une insulinothérapie."], ["Après une blessure musculaire, le patient doit suivre une physiothérapie."], ["En cas d'infection bactérienne, le médecin recommande une antibiothérapie."], ["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."] ] ) # Add marketing elements with gr.Blocks() as marketing_elements: gr.Markdown(""" ### 📖 Get the Complete Guide Learn how to build and deploy this exact model in 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition' - ✓ Step-by-step implementation - ✓ Performance optimization - ✓ Enterprise deployment patterns - ✓ Complete source code [Get the Book](https://a.co/d/eg7my5G) """) with gr.Row(): email_input = gr.Textbox( label="Get the French Healthcare NER Dataset", placeholder="Enter your business email" ) submit_btn = gr.Button("Access Dataset") # Launch the Gradio demo if __name__ == "__main__": demo.launch()