hassoudi's picture
Update app.py
f8a83d0 verified
raw
history blame
4.04 kB
import gradio as gr
from transformers import pipeline
import os
# Initialize global pipeline
ner_pipeline = None
def load_healthcare_ner_pipeline():
"""Load the Hugging Face pipeline for Healthcare NER."""
global ner_pipeline
if ner_pipeline is None:
ner_pipeline = pipeline(
"token-classification",
model="TypicaAI/HealthcareNER-Fr",
aggregation_strategy="first" # Groups B- and I- tokens into entities
)
return ner_pipeline
def process_text(text):
"""Process input text and return highlighted entities."""
pipeline = load_healthcare_ner_pipeline()
entities = pipeline(text)
return {"text": text, "entities": entities}
def log_demo_usage(text, num_entities):
"""Log demo usage for analytics."""
print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")
# Define the Gradio interface
# Define the main demo interface
demo = gr.Interface(
fn=process_text,
inputs=gr.Textbox(
label="Paste French medical text",
placeholder="Le patient présente une hypertension artérielle...",
lines=5
),
outputs=gr.HighlightedText(),
#outputs=gr.HTML(label="Identified Medical Entities"),
title="French Healthcare NER Demo",
description="""
As featured in _Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face_.
[Get the Book](https://a.co/d/eg7my5G)
### 🔬 Live Demo
Experience a demonstration of the French Healthcare NER model described in Chapter 6 of the book.
### 📚 Educational Focus
Learn step-by-step how to build this model, from architecture decisions to deployment.
### 🏥 Applications
Explore the potential of healthcare NLP for medical text analysis, clinical studies, and compliance.
### ⚡ Built on OCI
The model was trained on Oracle Cloud Infrastructure (OCI) to leverage its AI capabilities.
---
### **Disclaimer**
This is a **demo model** provided for educational purposes. It was trained on a limited dataset and is not intended for production use, clinical decision-making, or real-world medical applications.
---
_By **Hicham Assoudi** – AI Researcher (Ph.D.), Oracle Consultant, and Author._
""",
examples=[
["Le medecin donne des antibiotiques en cas d'infections des voies respiratoires e.g. pneumonie."],
["Dans le cas de l'asthme, le médecin peut recommander des corticoïdes pour réduire l'inflammation dans les poumons."],
["Pour soulager les symptômes d'allergie, le médecin prescrit des antihistaminiques."],
["Si le patient souffre de diabète de type 2, le médecin peut prescrire une insulinothérapie par exemple: Metformine 500mg."],
["Après une blessure musculaire ou une maladies douloureuses des tendons comme une tendinopathie, le patient pourrait suivre une kinésithérapie ou une physiothérapie."],
["En cas d'infection bactérienne, le médecin recommande une antibiothérapie."],
["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
]
)
# Add marketing elements
with gr.Blocks() as marketing_elements:
gr.Markdown("""
### 📖 Get the Complete Guide
Learn how to build and deploy this exact model in 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
- ✓ Step-by-step implementation
- ✓ Performance optimization
- ✓ Enterprise deployment patterns
- ✓ Complete source code
[Get the Book](https://a.co/d/eg7my5G)
""")
with gr.Row():
email_input = gr.Textbox(
label="Get the French Healthcare NER Dataset",
placeholder="Enter your business email"
)
submit_btn = gr.Button("Access Dataset")
# Launch the Gradio demo
if __name__ == "__main__":
demo.launch()