hassoudi's picture
Update app.py
9cd5bcf verified
raw
history blame
4.59 kB
import gradio as gr
from transformers import pipeline
from huggingface_hub import login
import os
# Initialize global pipeline
ner_pipeline = None
# Authenticate using the secret `HFTOKEN`
def authenticate_with_token():
"""Authenticate with the Hugging Face API using the HFTOKEN secret."""
hf_token = os.getenv("HFTOKEN") # Retrieve the token from environment variables
if not hf_token:
raise ValueError("HFTOKEN is not set. Please add it to the Secrets in your Space settings.")
login(token=hf_token)
def load_healthcare_ner_pipeline():
"""Load the Hugging Face pipeline for Healthcare NER."""
global ner_pipeline
if ner_pipeline is None:
# Authenticate and initialize pipeline
authenticate_with_token()
ner_pipeline = pipeline(
"token-classification",
model="TypicaAI/HealthcareNER-Fr",
aggregation_strategy="first" # Groups B- and I- tokens into entities
)
return ner_pipeline
def process_text(text):
"""Process input text and return highlighted entities."""
pipeline = load_healthcare_ner_pipeline()
entities = pipeline(text)
return {"text": text, "entities": entities}
def log_demo_usage(text, num_entities):
"""Log demo usage for analytics."""
print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")
# Define the main demo interface
demo = gr.Interface(
fn=process_text,
inputs=gr.Textbox(
label="Paste French medical text",
placeholder="Le patient présente une hypertension artérielle...",
lines=5
),
outputs=gr.HighlightedText(),
#outputs=gr.HTML(label="Identified Medical Entities"),
title="French Healthcare NER Demo",
description="""
_By **Hicham Assoudi** – AI Researcher (Ph.D.), Oracle Consultant, and Author._
🔬 **Live Demo**: Try this French Healthcare NER model, part of the healthcare NLP case study featured in the book *[Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face](https://a.co/d/h0xL4lo).* Dive into Chapter 6 for a comprehensive, step-by-step guide on building this model.
📚 **Educational Focus**: Gain practical, step-by-step guidance on building NLP models through a healthcare case study featured in the book. Discover how to extract insights from medical records, identify patient conditions, and ensure compliance with healthcare standards.
⚡ **Powered by OCI**: This model was trained on Oracle Cloud Infrastructure, leveraging its robust AI capabilities.
""",
article="""
### **Disclaimer**
This is a **demo model** provided for educational purposes. It was trained on a limited dataset and is not intended for production use, clinical decision-making, or real-world medical applications.
""",
examples=[
["Le medecin donne des antibiotiques en cas d'infections des voies respiratoires e.g. pneumonie."],
["Dans le cas de l'asthme, le médecin peut recommander des corticoïdes pour réduire l'inflammation dans les poumons."],
["Pour soulager les symptômes d'allergie, le médecin prescrit des antihistaminiques."],
["Si le patient souffre de diabète de type 2, le médecin peut prescrire une insulinothérapie par exemple: Metformine 500mg."],
["Après une blessure musculaire ou une maladies douloureuses des tendons comme une tendinopathie, le patient pourrait suivre une kinésithérapie ou une physiothérapie."],
["En cas d'infection bactérienne, le médecin recommande une antibiothérapie."],
["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
]
)
# Add marketing elements
with gr.Blocks() as marketing_elements:
gr.Markdown("""
### 📖 Get the Complete Guide
Learn how to build and deploy this exact model in 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
- ✓ Step-by-step implementation
- ✓ Performance optimization
- ✓ Enterprise deployment patterns
- ✓ Complete source code
[Get the Book](https://a.co/d/eg7my5G)
""")
with gr.Row():
email_input = gr.Textbox(
label="Get the French Healthcare NER Dataset",
placeholder="Enter your business email"
)
submit_btn = gr.Button("Access Dataset")
# Launch the Gradio demo
if __name__ == "__main__":
demo.launch()