hassoudi's picture
Update app.py
e8c9626 verified
raw
history blame
3.22 kB
import gradio as gr
from huggingface_hub import login
from transformers import pipeline
import os
# Initialize global pipeline
ner_pipeline = None
def load_healthcare_ner_pipeline():
"""Load the Hugging Face pipeline for Healthcare NER."""
global ner_pipeline
if ner_pipeline is None:
login(token=os.environ["HFTOKEN"])
ner_pipeline = pipeline(
"token-classification",
model="TypicaAI/HealthcareNER-Fr",
use_auth_token=os.environ["HFTOKEN"],
aggregation_strategy="simple" # Groups B- and I- tokens into entities
)
return ner_pipeline
def process_text(text):
"""Process input text and return highlighted entities."""
pipeline = load_healthcare_ner_pipeline()
entities = pipeline(text)
# Highlight entities in the text
html_output = highlight_entities(text, entities)
# Log usage
log_demo_usage(text, len(entities))
return html_output
def highlight_entities(text, entities):
"""Highlight identified entities in the input text."""
highlighted_text = text
for entity in entities:
entity_text = entity["word"]
highlighted_text = highlighted_text.replace(
entity_text,
f'<mark style="background-color: yellow;">{entity_text}</mark>'
)
return f"<p>{highlighted_text}</p>"
def log_demo_usage(text, num_entities):
"""Log demo usage for analytics."""
print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")
# Define the Gradio interface
demo = gr.Interface(
fn=process_text,
inputs=gr.Textbox(
label="Paste French medical text",
placeholder="Le patient présente une hypertension artérielle...",
lines=5
),
outputs=gr.HTML(label="Identified Medical Entities"),
title="French Healthcare NER Demo | As featured in 'NLP on OCI'",
description="""
🔬 Live demo of the French Healthcare NER model built in Chapter 5 of 'NLP on OCI'
📚 Follow along with the book to build this exact model step-by-step
🏥 Perfect for medical text analysis, clinical studies, and healthcare compliance
⚡ Powered by Oracle Cloud Infrastructure
By [Hicham Assoudi] - Oracle Consultant & AI Researcher
""",
examples=[
["Le patient souffre d'hypertension et diabète de type 2. Traitement: Metformine 500mg."],
["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
]
)
# Add marketing elements
with gr.Blocks() as marketing_elements:
gr.Markdown("""
### 📖 Get the Complete Guide
Learn how to build and deploy this exact model in 'NLP on OCI'
- ✓ Step-by-step implementation
- ✓ Performance optimization
- ✓ Enterprise deployment patterns
- ✓ Complete source code
[Get the Book](your-book-link) | Use code `NERSPACE` for 15% off
""")
with gr.Row():
email_input = gr.Textbox(
label="Get the French Healthcare NER Dataset",
placeholder="Enter your business email"
)
submit_btn = gr.Button("Access Dataset")
# Launch the Gradio demo
if __name__ == "__main__":
demo.launch()