Twelve2five's picture
Update app.py
b2842e8 verified
raw
history blame
15.4 kB
import os
import torch
import glob
import gc
from transformers import (
AutoModelForCausalLM,
BitsAndBytesConfig,
TrainingArguments,
Trainer
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
from accelerate import Accelerator
# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"
# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 1
GRAD_ACCUMULATION_STEPS = 64
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
MAX_SEQ_LENGTH = 256
MICRO_BATCH_SIZE = 1
# Multi-GPU configuration
accelerator = Accelerator()
# Configure environment for multi-GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
# Print GPU information
print(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")
def seq2seq_causal_collator(features):
"""
Collator that concatenates context (input_ids) and target (labels)
for Causal LM sequence-to-sequence training.
Masks the loss for the context part of the sequence.
Pads sequences to the maximum length in the batch.
"""
batch = {}
concatenated_input_ids = []
concatenated_labels = []
max_len = 0
# --- First pass: Concatenate, create masked labels, find max length ---
for feature in features:
# Dataset transform should provide tensors here
input_ids = feature['input_ids']
labels = feature['labels']
# Ensure tensors are 1D (handle potential extra dims if any)
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
if labels.dim() > 1: labels = labels.squeeze()
context_len = input_ids.shape[0]
target_len = labels.shape[0]
# Concatenate context and target for input
combined_ids = torch.cat([input_ids, labels], dim=0)
concatenated_input_ids.append(combined_ids)
# Create labels: -100 for context, actual labels for target
masked_labels = torch.cat([
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
labels
], dim=0)
concatenated_labels.append(masked_labels)
# Track max length for padding
if combined_ids.shape[0] > max_len:
max_len = combined_ids.shape[0]
# --- Second pass: Pad to max length ---
padded_input_ids = []
padded_labels = []
input_pad_token_id = 0
label_pad_token_id = -100
for i in range(len(features)):
ids = concatenated_input_ids[i]
lbls = concatenated_labels[i]
padding_len = max_len - ids.shape[0]
# Pad on the right side
padded_input_ids.append(torch.nn.functional.pad(
ids, (0, padding_len), value=input_pad_token_id
))
padded_labels.append(torch.nn.functional.pad(
lbls, (0, padding_len), value=label_pad_token_id
))
# --- Stack and create final batch ---
batch['input_ids'] = torch.stack(padded_input_ids)
batch['labels'] = torch.stack(padded_labels)
# Create attention mask (1 for real tokens, 0 for padding)
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
return batch
def prepare_for_dataset(batch):
output = {'input_ids': [], 'labels': []}
for item in batch:
output['input_ids'].append(item['input_ids'].cpu().tolist())
output['labels'].append(item['labels'].cpu().tolist())
return output
def load_model():
clean_memory() # Start with clean memory
print(f"Loading base model architecture from: {hf_model_repo_id}")
# Even more extreme quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16, # Use float16 instead of bfloat16
bnb_4bit_use_double_quant=True,
)
# For 4-bit training, we need to load on a single device
# Choose GPU with most available memory
free_memory = []
for i in range(torch.cuda.device_count()):
total_memory = torch.cuda.get_device_properties(i).total_memory
reserved_memory = torch.cuda.memory_reserved(i)
free_memory.append((total_memory - reserved_memory) / 1e9) # Convert to GB
# Choose the GPU with the most free memory
target_gpu = free_memory.index(max(free_memory))
print(f"Loading model on GPU {target_gpu} with {free_memory[target_gpu]:.2f}GB free memory")
# Use target GPU for model loading (crucial for 4-bit training)
device_map = {'': target_gpu}
# Load model on the single target GPU
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
quantization_config=bnb_config,
device_map=device_map, # Place entire model on one GPU
trust_remote_code=True,
use_cache=False,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
# Add print statement to check which device the model is on
print(f"Model loaded on device: {next(model.parameters()).device}")
# Continue with the LoRA config as before
print(f"Loaded model vocab size: {model.get_input_embeddings().weight.shape[0]}")
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
# --- Configure PEFT/LoRA ---
lora_config = LoraConfig(
r=16, # rank
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
)
# Prepare model for k-bit training
model = prepare_model_for_kbit_training(model)
# Add LoRA adapters
model = get_peft_model(model, lora_config)
# Log number of trainable parameters
model.print_trainable_parameters()
return model
def load_dataset():
# --- Download the dataset repository files ---
try:
os.makedirs(local_download_path, exist_ok=True)
downloaded_repo_root = snapshot_download(
repo_id=hf_dataset_repo_id,
repo_type="dataset",
local_dir=local_download_path,
local_dir_use_symlinks=False
)
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
except Exception as e:
print(f"Error downloading dataset: {e}")
return None
# --- Load .pt files into a Hugging Face Dataset object ---
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
if not all_pair_files:
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
if not all_pair_files:
print("No RVQ pair files found!")
return None
print(f"Found {len(all_pair_files)} RVQ pair files.")
# Load data from .pt files into memory
all_data_pairs = []
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
try:
episode_pairs = torch.load(file_path, map_location='cpu')
all_data_pairs.extend(episode_pairs)
except Exception as e:
print(f"Warning: Could not load file {file_path}: {e}")
if not all_data_pairs:
return None
print(f"Loaded {len(all_data_pairs)} training pairs.")
# Convert to Hugging Face Dataset
chunk_size = 1000
processed_data = {'input_ids': [], 'labels': []}
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
batch = all_data_pairs[i:i + chunk_size]
prepared_batch = prepare_for_dataset(batch)
processed_data['input_ids'].extend(prepared_batch['input_ids'])
processed_data['labels'].extend(prepared_batch['labels'])
hf_dataset = Dataset.from_dict(processed_data)
# Transform to get tensors back
hf_dataset.set_transform(lambda batch: {
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
})
# Cleanup
del all_data_pairs
del processed_data
gc.collect()
return hf_dataset
# Memory cleaning function
def clean_memory():
gc.collect()
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
with torch.cuda.device(f'cuda:{i}'):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def train_model(progress=gr.Progress()):
# Clean memory before starting
clean_memory()
# Load model with optimized memory settings
model = load_model()
# Load and prepare dataset
progress(0.1, desc="Loading dataset...")
train_dataset = load_dataset()
# Add verbose logging
import logging
logging.basicConfig(level=logging.INFO)
# Initialize trainer with debug flags
progress(0.2, desc="Initializing trainer...")
from transformers import TrainingArguments
# Ensure we're using the simplest training setup for first success
training_args = TrainingArguments(
output_dir=OUTPUT_TRAINING_DIR,
logging_dir=LOGGING_DIR,
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=16, # Reduced for faster iterations
learning_rate=LEARNING_RATE,
weight_decay=WEIGHT_DECAY,
warmup_ratio=WARMUP_RATIO,
lr_scheduler_type=LR_SCHEDULER,
report_to="tensorboard",
fp16=True,
# Simplified training - disable fancy features
local_rank=-1, # Disable distributed training for debugging
ddp_find_unused_parameters=False,
deepspeed=None,
# More frequent logging to see progress
logging_steps=1, # Log every step
save_strategy="no", # Don't save during initial test
# Other settings
optim="adamw_torch", # Use simpler optimizer
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
dataloader_num_workers=0,
group_by_length=False, # Disable grouping for debugging
max_grad_norm=1.0,
)
# Use a simpler data collator for testing
from transformers import default_data_collator
# Initialize trainer with simplified settings
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=default_data_collator, # Use default collator for testing
)
# Print memory status before training
progress(0.3, desc="Ready to train, checking memory...")
for i in range(torch.cuda.device_count()):
print(f"GPU {i} memory: {torch.cuda.memory_allocated(i) / 1e9:.2f}GB allocated, {torch.cuda.memory_reserved(i) / 1e9:.2f}GB reserved")
try:
# Add a timeout mechanism
import signal
class TimeoutException(Exception):
pass
def timeout_handler(signum, frame):
raise TimeoutException("Training step is taking too long")
# Set 30-minute timeout for training (adjust as needed)
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(1800) # 30 minutes in seconds
# Clean again just before training
clean_memory()
print("Starting training with verbose logging...")
progress(0.4, desc="Starting training (this may take a while for the first step)...")
# Try training with only a few steps first to test
trainer.train(max_steps=3) # Just try 3 steps to see if it works
# Cancel the alarm if training succeeds
signal.alarm(0)
progress(0.9, desc="Initial training successful! You can now run full training.")
return "Initial training completed successfully! The system is working. You can now adjust parameters for a full training run."
except TimeoutException as e:
return f"Training timed out: {str(e)}. Try reducing model parameters further or switching to a smaller model like LLaMA 3 3B."
except Exception as e:
error_msg = str(e)
print(f"Training error: {error_msg}")
# Add memory diagnostics to error message
mem_info = "\nMemory status at error time:\n"
for i in range(torch.cuda.device_count()):
mem_info += f"GPU {i}: {torch.cuda.memory_allocated(i) / 1e9:.2f}GB allocated, {torch.cuda.memory_reserved(i) / 1e9:.2f}GB reserved\n"
return f"An error occurred during training: {error_msg}\n{mem_info}"
# Create Gradio interface
def create_ui():
with gr.Blocks() as demo:
gr.Markdown("# Fine-tune LLaMA 3 8B with QLoRA")
with gr.Tab("Training"):
train_button = gr.Button("Start Fine-tuning")
result_text = gr.Textbox(label="Training Results", interactive=False)
train_button.click(train_model, outputs=result_text)
with gr.Tab("About"):
gr.Markdown("""
## Information
This is a Hugging Face Space version of the original Google Colab notebook.
It fine-tunes a quantized LLaMA 3 8B model using QLoRA on podcast dialogue data.
### Model
- Base Model: {YOUR_HF_USERNAME}/{MODEL_REPO_NAME}
- Using 4-bit quantization with LoRA adapters
### Dataset
- Custom dataset: {YOUR_HF_USERNAME}/{DATASET_REPO_NAME}
- Contains podcast dialogue pairs processed for training
### Training Setup
- QLoRA fine-tuning
- Epochs: {NUM_EPOCHS}
- Batch size: {BATCH_SIZE_PER_DEVICE} with {GRAD_ACCUMULATION_STEPS} gradient accumulation steps
- Learning rate: {LEARNING_RATE}
""".format(
YOUR_HF_USERNAME=YOUR_HF_USERNAME,
MODEL_REPO_NAME=MODEL_REPO_NAME,
DATASET_REPO_NAME=DATASET_REPO_NAME,
NUM_EPOCHS=NUM_EPOCHS,
BATCH_SIZE_PER_DEVICE=BATCH_SIZE_PER_DEVICE,
GRAD_ACCUMULATION_STEPS=GRAD_ACCUMULATION_STEPS,
LEARNING_RATE=LEARNING_RATE
))
return demo
# Main entry point
if __name__ == "__main__":
# Install dependencies first if needed
# !pip install -q -U transformers accelerate bitsandbytes peft torch datasets huggingface_hub gradio
# Create and launch the UI
demo = create_ui()
demo.launch()