Spaces:
Runtime error
Runtime error
File size: 9,170 Bytes
4df6700 c4620f8 4df6700 f558bc0 4df6700 f558bc0 4df6700 f558bc0 4df6700 f558bc0 4df6700 013f6a1 f558bc0 013f6a1 4df6700 013f6a1 4df6700 f558bc0 4df6700 f558bc0 4df6700 013f6a1 f558bc0 013f6a1 f558bc0 4df6700 c4620f8 f558bc0 c4620f8 f558bc0 c4620f8 f558bc0 c4620f8 4df6700 c4620f8 40785f3 c4620f8 40785f3 c4620f8 40785f3 c4620f8 f558bc0 c4620f8 40785f3 f558bc0 40785f3 f558bc0 d518218 f558bc0 d518218 f558bc0 d518218 f558bc0 38edbec f558bc0 d518218 f558bc0 2bd4006 f1d26c3 227326d f1d26c3 f558bc0 42a325e f558bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import time
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from elevenlabs import ElevenLabs
from fastrtc import (
Stream,
get_stt_model,
ReplyOnPause,
AdditionalOutputs
)
from gradio.utils import get_space
import requests
import io
import soundfile as sf
from gtts import gTTS
import re
import logging
# Set up logging for WebRTC debugging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("fastrtc-voice-assistant")
# Load environment variables
load_dotenv()
# Enable WebRTC debug tracing
os.environ["WEBRTC_TRACE"] = "WEBRTC_TRACE_ALL"
# Initialize clients
logger.info("Initializing clients...")
elevenlabs_client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
stt_model = get_stt_model()
logger.info("Clients initialized")
class DeepSeekAPI:
def __init__(self, api_key):
self.api_key = api_key
def chat_completion(self, messages, temperature=0.7, max_tokens=512):
url = "https://api.deepseek.com/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"
}
payload = {
"model": "deepseek-chat",
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
response = requests.post(url, json=payload, headers=headers)
# Check for error response
if response.status_code != 200:
logger.error(f"DeepSeek API error: {response.status_code} - {response.text}")
return {"choices": [{"message": {"content": "I'm sorry, I encountered an error processing your request."}}]}
return response.json()
deepseek_client = DeepSeekAPI(api_key=os.getenv("DEEPSEEK_API_KEY"))
def response(
audio: tuple[int, np.ndarray],
chatbot: list[dict] | None = None,
):
chatbot = chatbot or []
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
# Convert speech to text
logger.info("Converting speech to text...")
text = stt_model.stt(audio)
logger.info(f"User said: {text}")
# Add user message to chat
chatbot.append({"role": "user", "content": text})
yield AdditionalOutputs(chatbot)
# Get AI response
messages.append({"role": "user", "content": text})
# Call DeepSeek API
logger.info("Calling DeepSeek API...")
response_data = deepseek_client.chat_completion(messages)
response_text = response_data["choices"][0]["message"]["content"]
logger.info(f"DeepSeek response: {response_text[:50]}...")
# Add AI response to chat
chatbot.append({"role": "assistant", "content": response_text})
# Convert response to speech
if os.getenv("ELEVENLABS_API_KEY"):
try:
logger.info("Using ElevenLabs for speech generation")
# Use the streaming API for better experience
for chunk in elevenlabs_client.text_to_speech.convert_as_stream(
text=response_text,
voice_id="Antoni",
model_id="eleven_monolingual_v1",
output_format="pcm_24000"
):
audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
yield (24000, audio_array)
except Exception as e:
logger.error(f"ElevenLabs error: {e}, falling back to gTTS")
# Fall back to gTTS
yield from use_gtts_for_text(response_text)
else:
# Fall back to gTTS
logger.info("ElevenLabs API key not found, using gTTS...")
yield from use_gtts_for_text(response_text)
yield AdditionalOutputs(chatbot)
def use_gtts_for_text(text):
"""Helper function to generate speech with gTTS for the entire text"""
try:
# Split text into sentences for better results
sentences = re.split(r'(?<=[.!?])\s+', text)
for sentence in sentences:
if not sentence.strip():
continue
mp3_fp = io.BytesIO()
logger.info(f"Using gTTS for: {sentence[:30]}...")
tts = gTTS(text=sentence, lang='en-us', tld='com', slow=False)
tts.write_to_fp(mp3_fp)
mp3_fp.seek(0)
data, samplerate = sf.read(mp3_fp)
if len(data.shape) > 1 and data.shape[1] > 1:
data = data[:, 0]
if samplerate != 24000:
data = np.interp(
np.linspace(0, len(data), int(len(data) * 24000 / samplerate)),
np.arange(len(data)),
data
)
data = (data * 32767).astype(np.int16)
# Ensure buffer size is even
if len(data) % 2 != 0:
data = np.append(data, [0])
# Reshape and yield in chunks
chunk_size = 4800
for i in range(0, len(data), chunk_size):
chunk = data[i:i+chunk_size]
if len(chunk) > 0:
if len(chunk) % 2 != 0:
chunk = np.append(chunk, [0])
chunk = chunk.reshape(1, -1)
yield (24000, chunk)
except Exception as e:
logger.error(f"gTTS error: {e}")
yield None
# Comprehensive WebRTC configuration with multiple STUN/TURN options
rtc_configuration = {
"iceServers": [
# Google STUN servers
{"urls": ["stun:stun.l.google.com:19302"]},
{"urls": ["stun:stun1.l.google.com:19302"]},
{"urls": ["stun:stun2.l.google.com:19302"]},
{"urls": ["stun:stun3.l.google.com:19302"]},
{"urls": ["stun:stun4.l.google.com:19302"]},
# OpenRelay TURN servers
{
"urls": ["turn:openrelay.metered.ca:80"],
"username": "openrelayproject",
"credential": "openrelayproject"
},
{
"urls": ["turn:openrelay.metered.ca:443"],
"username": "openrelayproject",
"credential": "openrelayproject"
},
{
"urls": ["turn:openrelay.metered.ca:443?transport=tcp"],
"username": "openrelayproject",
"credential": "openrelayproject"
},
# Additional public STUN servers
{"urls": ["stun:stun.stunprotocol.org:3478"]},
{"urls": ["stun:stun.voip.blackberry.com:3478"]},
{"urls": ["stun:stun.nextcloud.com:443"]}
],
"iceCandidatePoolSize": 10,
"bundlePolicy": "max-bundle",
"rtcpMuxPolicy": "require",
"iceTransportPolicy": "all" # Try "relay" if "all" doesn't work
}
# Create a simple wrapper for the webchat UI
with gr.Blocks(title="LLM Voice Chat (Powered by DeepSeek & ElevenLabs)") as demo:
gr.Markdown("# LLM Voice Chat\nPowered by DeepSeek & ElevenLabs")
with gr.Row():
with gr.Column(scale=3):
# Create the chatbot component
chatbot = gr.Chatbot(type="messages")
# For debugging, allow seeing connection status
connection_status = gr.Textbox(label="Connection Status",
value="Ready to connect. Click the microphone button to start.",
interactive=False)
# Display debugging information
debug_info = gr.Textbox(label="Debug Info",
value="WebRTC debug information will appear here.",
interactive=False)
# Button to manually refresh the page
refresh_btn = gr.Button("Refresh Connection")
def refresh_page():
debug_info.value = f"Attempting to refresh connection at {time.time()}"
return "Refreshed", f"Connection refresh attempted at {time.time()}"
refresh_btn.click(
refresh_page,
outputs=[connection_status, debug_info]
)
logger.info("Creating Stream component...")
# Initialize the stream (outside of the blocks context)
stream = Stream(
modality="audio",
mode="send-receive",
handler=ReplyOnPause(response, input_sample_rate=16000),
additional_outputs_handler=lambda a, b: b,
additional_inputs=[chatbot],
additional_outputs=[chatbot],
rtc_configuration=rtc_configuration,
concurrency_limit=5 if get_space() else None,
time_limit=90 if get_space() else None
)
# Mount the stream to the blocks interface
stream.render()
logger.info("Stream component created and rendered")
# Launch the app
if __name__ == "__main__":
# Local development
logger.info("Running in development mode")
os.environ["GRADIO_SSR_MODE"] = "false"
demo.launch(server_port=7860, share=True)
else:
# Hugging Face Spaces
logger.info("Running in Hugging Face Spaces")
demo.launch()
|