File size: 9,161 Bytes
4df6700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40785f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd4006
4df6700
 
 
 
 
 
 
40785f3
 
4df6700
 
ee0d47e
2bd4006
ee0d47e
 
 
4df6700
 
ee0d47e
 
 
 
 
 
 
 
4df6700
ee0d47e
 
4df6700
ee0d47e
 
4df6700
ee0d47e
2bd4006
ee0d47e
 
 
2bd4006
69d7462
ee0d47e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import time
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from elevenlabs import ElevenLabs
from fastrtc import (
    Stream,
    get_stt_model,
    ReplyOnPause,
    AdditionalOutputs
)

import requests
import io
import soundfile as sf
from gtts import gTTS
import re
import torch
import torchaudio
from huggingface_hub import login, hf_hub_download

from deepseek import DeepSeekAPI

# Load environment variables
load_dotenv()

# Initialize clients
elevenlabs_client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
stt_model = get_stt_model()
deepseek_client = DeepSeekAPI(api_key=os.getenv("DEEPSEEK_API_KEY"))

# Add this debug code temporarily to see what methods are available:
print(dir(deepseek_client))

# Set CSM to None to skip that option
csm_generator = None

def response(
    audio: tuple[int, np.ndarray],
    chatbot: list[dict] | None = None,
):
    chatbot = chatbot or []
    messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
    
    # Convert speech to text
    text = stt_model.stt(audio)
    print("prompt:", text)
    
    # Add user message to chat
    chatbot.append({"role": "user", "content": text})
    yield AdditionalOutputs(chatbot)
    
    # Get AI response
    messages.append({"role": "user", "content": text})
    response_text = get_deepseek_response(messages)
    
    # Add AI response to chat
    chatbot.append({"role": "assistant", "content": response_text})
    
    # Convert response to speech
    for audio_data in text_to_speech(response_text):
        if audio_data:
            yield audio_data
    
    yield AdditionalOutputs(chatbot)

# Your existing helper functions remain unchanged
def use_gtts_for_sentence(sentence):
    """Helper function to generate speech with gTTS"""
    try:
        # Process each sentence separately
        mp3_fp = io.BytesIO()
        
        # Force US English
        print(f"Using gTTS with en-us locale for sentence: {sentence[:20]}...")
        tts = gTTS(text=sentence, lang='en-us', tld='com', slow=False)
        tts.write_to_fp(mp3_fp)
        mp3_fp.seek(0)
        
        # Process audio data
        data, samplerate = sf.read(mp3_fp)
        
        # Convert to mono if stereo
        if len(data.shape) > 1 and data.shape[1] > 1:
            data = data[:, 0]
        
        # Resample to 24000 Hz if needed
        if samplerate != 24000:
            data = np.interp(
                np.linspace(0, len(data), int(len(data) * 24000 / samplerate)),
                np.arange(len(data)),
                data
            )
        
        # Convert to 16-bit integers
        data = (data * 32767).astype(np.int16)
        
        # Ensure buffer size is even
        if len(data) % 2 != 0:
            data = np.append(data, [0])
        
        # Reshape and yield in chunks
        chunk_size = 4800
        for i in range(0, len(data), chunk_size):
            chunk = data[i:i+chunk_size]
            if len(chunk) > 0:
                if len(chunk) % 2 != 0:
                    chunk = np.append(chunk, [0])
                chunk = chunk.reshape(1, -1)
                yield (24000, chunk)
    except Exception as e:
        print(f"gTTS error: {e}")
        yield None

def text_to_speech(text):
    """Convert text to speech using ElevenLabs or gTTS as fallback"""
    try:
        # Split text into sentences for faster perceived response
        sentences = re.split(r'(?<=[.!?])\s+', text)
        
        # Try ElevenLabs first
        if os.getenv("ELEVENLABS_API_KEY"):
            print("Using ElevenLabs for text-to-speech...")
            
            for sentence in sentences:
                if not sentence.strip():
                    continue
                
                try:
                    print(f"Generating ElevenLabs speech for: {sentence[:30]}...")
                    
                    # Generate audio using ElevenLabs
                    audio_data = elevenlabs_client.generate(
                        text=sentence,
                        voice="Antoni",  # You can change to any available voice
                        model="eleven_monolingual_v1"
                    )
                    
                    # Convert to numpy array
                    mp3_fp = io.BytesIO(audio_data)
                    data, samplerate = sf.read(mp3_fp)
                    
                    # Convert to mono if stereo
                    if len(data.shape) > 1 and data.shape[1] > 1:
                        data = data[:, 0]
                    
                    # Resample to 24000 Hz if needed
                    if samplerate != 24000:
                        data = np.interp(
                            np.linspace(0, len(data), int(len(data) * 24000 / samplerate)),
                            np.arange(len(data)),
                            data
                        )
                    
                    # Convert to 16-bit integers
                    data = (data * 32767).astype(np.int16)
                    
                    # Ensure buffer size is even
                    if len(data) % 2 != 0:
                        data = np.append(data, [0])
                    
                    # Reshape and yield in chunks
                    chunk_size = 4800
                    for i in range(0, len(data), chunk_size):
                        chunk = data[i:i+chunk_size]
                        if len(chunk) > 0:
                            if len(chunk) % 2 != 0:
                                chunk = np.append(chunk, [0])
                            chunk = chunk.reshape(1, -1)
                            yield (24000, chunk)
                            
                except Exception as e:
                    print(f"ElevenLabs error: {e}, falling back to gTTS")
                    # Fall through to gTTS for this sentence
                    for audio_chunk in use_gtts_for_sentence(sentence):
                        if audio_chunk:
                            yield audio_chunk
        else:
            # Fall back to gTTS
            print("ElevenLabs API key not found, using gTTS...")
            for sentence in sentences:
                if sentence.strip():
                    for audio_chunk in use_gtts_for_sentence(sentence):
                        if audio_chunk:
                            yield audio_chunk
    except Exception as e:
        print(f"Exception in text_to_speech: {e}")
        yield None

def get_deepseek_response(messages):
    url = "https://api.deepseek.com/v1/chat/completions"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {os.getenv('DEEPSEEK_API_KEY')}"
    }
    payload = {
        "model": "deepseek-chat",
        "messages": messages,
        "temperature": 0.7,
        "max_tokens": 512
    }
    response = requests.post(url, json=payload, headers=headers)
    
    # Check for error response
    if response.status_code != 200:
        print(f"DeepSeek API error: {response.status_code} - {response.text}")
        return "I'm sorry, I encountered an error processing your request."
        
    response_json = response.json()
    return response_json["choices"][0]["message"]["content"]

# WebRTC configuration required for Hugging Face Spaces
rtc_config = {
    "iceServers": [
        {"urls": ["stun:stun.l.google.com:19302"]},
        {
            "urls": ["turn:openrelay.metered.ca:80"],
            "username": "openrelayproject",
            "credential": "openrelayproject"
        },
        {
            "urls": ["turn:openrelay.metered.ca:443"],
            "username": "openrelayproject",
            "credential": "openrelayproject"
        },
        {
            "urls": ["turn:openrelay.metered.ca:443?transport=tcp"],
            "username": "openrelayproject",
            "credential": "openrelayproject"
        }
    ]
}

# Create Gradio interface with the required rtc_configuration
chatbot = gr.Chatbot(type="messages")
stream = Stream(
    modality="audio",
    mode="send-receive",
    handler=ReplyOnPause(response, input_sample_rate=16000),
    additional_outputs_handler=lambda a, b: b,
    additional_inputs=[chatbot],
    additional_outputs=[chatbot],
    ui_args={"title": "LLM Voice Chat (Powered by DeepSeek & ElevenLabs)"},
    rtc_configuration=rtc_config  # Add the WebRTC configuration
)

# FastAPI app with Gradio interface
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr

app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Mount the Gradio app
app = gr.mount_gradio_app(app, stream.ui, path="/")

# Add the Stream to FastAPI
stream.mount(app)

# No launch code here - let Hugging Face Spaces handle the server launch

# Only if running locally would you use this:
if __name__ == "__main__" and not os.getenv("HF_SPACE"):
    import uvicorn
    PORT = int(os.getenv("PORT", 7860))
    print(f"Using port: {PORT}")
    uvicorn.run(app, host="0.0.0.0", port=PORT)