Spaces:
Runtime error
Runtime error
File size: 6,296 Bytes
4df6700 c4620f8 4df6700 013f6a1 4df6700 013f6a1 4df6700 013f6a1 4df6700 c4620f8 4df6700 c4620f8 40785f3 c4620f8 40785f3 c4620f8 40785f3 c4620f8 40785f3 c4620f8 40785f3 38edbec d518218 42a325e d518218 42a325e 38edbec 42a325e d518218 1cce1a4 42a325e 1cce1a4 2bd4006 1cce1a4 42a325e 1cce1a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
import time
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from elevenlabs import ElevenLabs
from fastrtc import (
Stream,
get_stt_model,
ReplyOnPause,
AdditionalOutputs
)
from gradio.utils import get_space
import requests
import io
import soundfile as sf
from gtts import gTTS
import re
# Load environment variables
load_dotenv()
# Initialize clients
elevenlabs_client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
stt_model = get_stt_model()
class DeepSeekAPI:
def __init__(self, api_key):
self.api_key = api_key
def chat_completion(self, messages, temperature=0.7, max_tokens=512):
url = "https://api.deepseek.com/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"
}
payload = {
"model": "deepseek-chat",
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
response = requests.post(url, json=payload, headers=headers)
# Check for error response
if response.status_code != 200:
print(f"DeepSeek API error: {response.status_code} - {response.text}")
return {"choices": [{"message": {"content": "I'm sorry, I encountered an error processing your request."}}]}
return response.json()
deepseek_client = DeepSeekAPI(api_key=os.getenv("DEEPSEEK_API_KEY"))
def response(
audio: tuple[int, np.ndarray],
chatbot: list[dict] | None = None,
):
chatbot = chatbot or []
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
# Convert speech to text
text = stt_model.stt(audio)
print("prompt:", text)
# Add user message to chat
chatbot.append({"role": "user", "content": text})
yield AdditionalOutputs(chatbot)
# Get AI response
messages.append({"role": "user", "content": text})
# Call DeepSeek API
response_data = deepseek_client.chat_completion(messages)
response_text = response_data["choices"][0]["message"]["content"]
# Add AI response to chat
chatbot.append({"role": "assistant", "content": response_text})
# Convert response to speech
if os.getenv("ELEVENLABS_API_KEY"):
try:
print(f"Generating ElevenLabs speech for response")
# Use the streaming API for better experience
for chunk in elevenlabs_client.text_to_speech.convert_as_stream(
text=response_text,
voice_id="Antoni",
model_id="eleven_monolingual_v1",
output_format="pcm_24000"
):
audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
yield (24000, audio_array)
except Exception as e:
print(f"ElevenLabs error: {e}, falling back to gTTS")
# Fall back to gTTS
yield from use_gtts_for_text(response_text)
else:
# Fall back to gTTS
print("ElevenLabs API key not found, using gTTS...")
yield from use_gtts_for_text(response_text)
yield AdditionalOutputs(chatbot)
def use_gtts_for_text(text):
"""Helper function to generate speech with gTTS for the entire text"""
try:
# Split text into sentences for better results
sentences = re.split(r'(?<=[.!?])\s+', text)
for sentence in sentences:
if not sentence.strip():
continue
mp3_fp = io.BytesIO()
print(f"Using gTTS for sentence: {sentence[:30]}...")
tts = gTTS(text=sentence, lang='en-us', tld='com', slow=False)
tts.write_to_fp(mp3_fp)
mp3_fp.seek(0)
data, samplerate = sf.read(mp3_fp)
if len(data.shape) > 1 and data.shape[1] > 1:
data = data[:, 0]
if samplerate != 24000:
data = np.interp(
np.linspace(0, len(data), int(len(data) * 24000 / samplerate)),
np.arange(len(data)),
data
)
data = (data * 32767).astype(np.int16)
# Ensure buffer size is even
if len(data) % 2 != 0:
data = np.append(data, [0])
# Reshape and yield in chunks
chunk_size = 4800
for i in range(0, len(data), chunk_size):
chunk = data[i:i+chunk_size]
if len(chunk) > 0:
if len(chunk) % 2 != 0:
chunk = np.append(chunk, [0])
chunk = chunk.reshape(1, -1)
yield (24000, chunk)
except Exception as e:
print(f"gTTS error: {e}")
yield None
# Enhanced WebRTC configuration with more STUN/TURN servers
rtc_configuration = {
"iceServers": [
{"urls": ["stun:stun.l.google.com:19302", "stun:stun1.l.google.com:19302"]},
{
"urls": ["turn:openrelay.metered.ca:80"],
"username": "openrelayproject",
"credential": "openrelayproject"
},
{
"urls": ["turn:openrelay.metered.ca:443?transport=tcp"],
"username": "openrelayproject",
"credential": "openrelayproject"
}
],
"iceCandidatePoolSize": 10
}
# Create Gradio chatbot and stream
chatbot = gr.Chatbot(type="messages")
stream = Stream(
modality="audio",
mode="send-receive",
handler=ReplyOnPause(response, input_sample_rate=16000),
additional_outputs_handler=lambda a, b: b,
additional_inputs=[chatbot],
additional_outputs=[chatbot],
rtc_configuration=rtc_configuration,
concurrency_limit=5 if get_space() else None,
time_limit=90 if get_space() else None,
ui_args={"title": "LLM Voice Chat (Powered by DeepSeek & ElevenLabs)"}
)
# Export the UI for Hugging Face Spaces
demo = stream.ui
# For local development only
if __name__ == "__main__" and not get_space():
import uvicorn
os.environ["GRADIO_SSR_MODE"] = "false"
stream.ui.launch(server_port=7860)
|