Spaces:
Runtime error
Runtime error
Commit
·
8bd3a78
1
Parent(s):
20d1199
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, LayoutLMv3ImageProcessor
|
| 3 |
+
|
| 4 |
+
model_name = "TusharGoel/LiLT-Document-QA"
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, apply_ocr = True)
|
| 6 |
+
image_processor = LayoutLMv3ImageProcessor()
|
| 7 |
+
|
| 8 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 9 |
+
model.eval()
|
| 10 |
+
|
| 11 |
+
def qna(image, question):
|
| 12 |
+
|
| 13 |
+
res = image_processor(image, apply_ocr = True)
|
| 14 |
+
words = res["words"][0]
|
| 15 |
+
boxes = res["boxes"][0]
|
| 16 |
+
|
| 17 |
+
encoding = tokenizer(question, words, boxes = boxes, return_token_type_ids=True, return_tensors="pt", truncation=True, padding="max_length")
|
| 18 |
+
|
| 19 |
+
word_ids = encoding.word_ids(0)
|
| 20 |
+
outputs = model(**encoding)
|
| 21 |
+
|
| 22 |
+
print(outputs)
|
| 23 |
+
|
| 24 |
+
start_scores = outputs.start_logits
|
| 25 |
+
end_scores = outputs.end_logits
|
| 26 |
+
|
| 27 |
+
start, end = word_ids[start_scores.argmax(-1).item()], word_ids[end_scores.argmax(-1).item()]
|
| 28 |
+
|
| 29 |
+
answer = " ".join(words[start : end + 1])
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
return answer
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
img = gr.Image(source="upload", label="Image")
|
| 36 |
+
question = gr.Text(label="Question")
|
| 37 |
+
|
| 38 |
+
iface = gr.Interface(fn=qna, inputs=[img, question], outputs="text", title="LiLT - Document Question Answering")
|
| 39 |
+
iface.launch()
|