import gradio as gr from huggingface_hub import InferenceClient from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer from PIL import Image from threading import Thread # Initialize model and processor model_id = "llava-hf/llava-interleave-qwen-0.5b-hf" processor = LlavaProcessor.from_pretrained(model_id) model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu") # Initialize inference clients client_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") def llava(inputs): """Processes an image and text input using Llava.""" try: image = Image.open(inputs["files"][0]).convert("RGB") prompt = f"<|im_start|>user \n{inputs['text']}<|im_end|>" processed = processor(prompt, image, return_tensors="pt").to("cpu") return processed except Exception as e: print(f"Error in llava function: {e}") return None def respond(message, history): """Generate a response based on text or image input.""" try: if "files" in message and message["files"]: # Handle image + text input inputs = llava(message) if inputs is None: raise ValueError("Failed to process image input") streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True) thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer)) thread.start() buffer = "" for new_text in streamer: buffer += new_text history[-1][1] = buffer yield history, history else: # Handle text-only input user_message = message["text"] history.append([user_message, None]) prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]] response = client_mistral.chat_completion(prompt, max_tokens=200) bot_message = response["choices"][0]["message"]["content"] history[-1][1] = bot_message yield history, history except Exception as e: print(f"Error in respond function: {e}") history[-1][1] = f"An error occurred: {str(e)}" yield history, history # Set up Gradio interface with gr.Blocks() as demo: chatbot = gr.Chatbot() with gr.Row(): with gr.Column(): text_input = gr.Textbox(placeholder="Enter your message...") file_input = gr.File(label="Upload an image") def handle_text(text, history=[]): """Handle text input and generate responses.""" return respond({"text": text}, history) def handle_file_upload(files, history=[]): """Handle file uploads and generate responses.""" return respond({"files": files, "text": "Describe this image."}, history) # Connect components to callbacks text_input.submit(handle_text, [text_input, chatbot], [chatbot, chatbot]) file_input.change(handle_file_upload, [file_input, chatbot], [chatbot, chatbot]) # Launch the Gradio app demo.launch()