Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer | |
from PIL import Image | |
from threading import Thread | |
# Initialize model and processor | |
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf" | |
processor = LlavaProcessor.from_pretrained(model_id) | |
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu") | |
# Initialize inference clients | |
client_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") | |
def llava(inputs): | |
"""Processes an image and text input using Llava.""" | |
try: | |
image = Image.open(inputs["files"][0]).convert("RGB") | |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>" | |
processed = processor(prompt, image, return_tensors="pt").to("cpu") | |
return processed | |
except Exception as e: | |
print(f"Error in llava function: {e}") | |
return None | |
def respond(message, history): | |
"""Generate a response based on text or image input.""" | |
try: | |
if "files" in message and message["files"]: | |
# Handle image + text input | |
inputs = llava(message) | |
if inputs is None: | |
raise ValueError("Failed to process image input") | |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True) | |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer)) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
history[-1][1] = buffer | |
yield history, history | |
else: | |
# Handle text-only input | |
user_message = message["text"] | |
history.append([user_message, None]) | |
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]] | |
response = client_mistral.chat_completion(prompt, max_tokens=200) | |
bot_message = response["choices"][0]["message"]["content"] | |
history[-1][1] = bot_message | |
yield history, history | |
except Exception as e: | |
print(f"Error in respond function: {e}") | |
history[-1][1] = f"An error occurred: {str(e)}" | |
yield history, history | |
# Set up Gradio interface | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox(placeholder="Enter your message...") | |
file_input = gr.File(label="Upload an image") | |
def handle_text(text, history=[]): | |
"""Handle text input and generate responses.""" | |
return respond({"text": text}, history) | |
def handle_file_upload(files, history=[]): | |
"""Handle file uploads and generate responses.""" | |
return respond({"files": files, "text": "Describe this image."}, history) | |
# Connect components to callbacks | |
text_input.submit(handle_text, [text_input, chatbot], [chatbot, chatbot]) | |
file_input.change(handle_file_upload, [file_input, chatbot], [chatbot, chatbot]) | |
# Launch the Gradio app | |
demo.launch() |