Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
"""app.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1XblbxoRxB4XOHixjGij789FPD9KjKdhi | |
""" | |
import os | |
import PyPDF2 | |
import gradio as gr | |
from langchain_groq.chat_models import ChatGroq | |
# Set Groq API key securely | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Fetch from environment variables | |
# Ensure API key is available | |
if not GROQ_API_KEY: | |
raise ValueError("GROQ_API_KEY is not set. Add it in Hugging Face Secrets.") | |
# Initialize LLM (Mistral-8x7B) | |
llm = ChatGroq(model_name="mixtral-8x7b-32768") | |
def extract_text_from_pdf(pdf_file): | |
"""Extract text from a PDF file.""" | |
text = "" | |
reader = PyPDF2.PdfReader(pdf_file) | |
for page in reader.pages: | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text + "\n" | |
return text | |
def summarize_text(text): | |
"""Summarize the text""" | |
prompt = f"Summarize the following document:\n\n{text[:10000]}" # Limit input size | |
response = llm.predict(prompt) | |
return response | |
def process_pdf(file): | |
"""Extract text and summarize PDF using Mistral-8x7B.""" | |
if file is None: | |
return "No file uploaded." | |
# Read file bytes and process it using PyPDF2 | |
pdf_reader = PyPDF2.PdfReader(file) | |
text = "" | |
for page in pdf_reader.pages: | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text + "\n" | |
# Limit text size for API efficiency | |
text = text[:10000] if len(text) > 10000 else text | |
# Summarize | |
summary = summarize_text(text) | |
return summary | |
# Create Gradio Interface | |
interface = gr.Interface( | |
fn=process_pdf, | |
inputs=gr.File(label="Upload a PDF"), | |
outputs="text", | |
title="π PDF Summarizer", | |
description="Upload a PDF file and get a summary" | |
) | |
# Run the app | |
interface.launch() |