import gradio as gr import pandas as pd from neuralprophet import NeuralProphet import warnings import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR warnings.filterwarnings("ignore", category=UserWarning) url = "VN Index Historical Data.csv" df = pd.read_csv(url) df = df[["Date", "Price"]] df = df.rename(columns={"Date": "ds", "Price": "y"}) df.fillna(method='ffill', inplace=True) df.dropna(inplace=True) class CustomNeuralProphet(NeuralProphet): def __init__(self, **kwargs): super().__init__(**kwargs) self.optimizer = None def lr_scheduler_step(self, epoch, batch_idx, optimizer): # Custom logic for LR scheduler step for lr_scheduler in optimizer.param_groups[0]['lr_scheduler']: lr_scheduler.step() m = CustomNeuralProphet( n_forecasts=30, n_lags=12, changepoints_range=1, num_hidden_layers=3, yearly_seasonality=True, n_changepoints=150, trend_reg_threshold=False, d_hidden=3, global_normalization=True, seasonality_reg=1, unknown_data_normalization=True, seasonality_mode="multiplicative", drop_missing=True, learning_rate=0.03, ) # Set the custom LR scheduler m.fit(df, freq='D') # Fit the model first before accessing the optimizer m.optimizer = optim.Adam(m.model.parameters(), lr=0.03) # Example optimizer, adjust as needed lr_scheduler = LambdaLR(m.optimizer, lambda epoch: 0.95 ** epoch) # Example LR scheduler, adjust as needed m.optimizer.param_groups[0]['lr_scheduler'] = [lr_scheduler] future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True) forecast = m.predict(future) def predict_vn_index(option=None): fig = m.plot(forecast) path = "forecast_plot.png" fig.savefig(path) disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách." return path, disclaimer if __name__ == "__main__": dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex") image_output = gr.outputs.Image(type="file", label="Forecast Plot") disclaimer_output = gr.outputs.Textbox(label="Disclaimer") interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=[image_output, disclaimer_output], title="Dự báo VN Index 30 ngày tới") interface.launch()