import gradio as gr import pandas as pd from neuralprophet import NeuralProphet import io import warnings import torch.optim.lr_scheduler as lr_scheduler warnings.filterwarnings("ignore", category=UserWarning) url = "VN Index Historical Data.csv" df = pd.read_csv(url) df = df[["Date", "Price"]] df = df.rename(columns={"Date": "ds", "Price": "y"}) df.fillna(method='ffill', inplace=True) df.dropna(inplace=True) class CustomNeuralProphet(NeuralProphet): def __init__(self, **kwargs): super().__init__(**kwargs) self.lr_scheduler = lr_scheduler.ReduceLROnPlateau(self.trainer.optimizers[0], mode='min', factor=0.5, patience=10, verbose=True) def lr_scheduler_step(self, metrics): self.lr_scheduler.step(metrics) m = CustomNeuralProphet( n_forecasts=30, n_lags=12, changepoints_range=1, num_hidden_layers=3, yearly_seasonality=True, n_changepoints=150, trend_reg_threshold=False, d_hidden=3, global_normalization=True, seasonality_reg=1, unknown_data_normalization=True, seasonality_mode="multiplicative", drop_missing=True, learning_rate=0.03, ) m.fit(df, freq='D') future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True) forecast = m.predict(future) def predict_vn_index(option=None): fig = m.plot(forecast) path = "forecast_plot.png" fig.savefig(path) disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách." return path, disclaimer if __name__ == "__main__": dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex") image_output = gr.outputs.Image(type="file", label="Forecast Plot") disclaimer_output = gr.outputs.Textbox(label="Disclaimer") interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=[image_output, disclaimer_output], title="Dự báo VN Index 30 ngày tới") interface.launch(share=True)