|
''' |
|
ART-JATIC Gradio Example App |
|
|
|
To run: |
|
- clone the repository |
|
- execute: gradio examples/gradio_app.py or python examples/gradio_app.py |
|
- navigate to local URL e.g. http://127.0.0.1:7860 |
|
''' |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from carbon_theme import Carbon |
|
|
|
import numpy as np |
|
import torch |
|
import transformers |
|
|
|
from art.estimators.classification.hugging_face import HuggingFaceClassifierPyTorch |
|
from art.attacks.evasion import ProjectedGradientDescentPyTorch, AdversarialPatchPyTorch |
|
from art.utils import load_dataset |
|
|
|
from art.attacks.poisoning import PoisoningAttackBackdoor |
|
from art.attacks.poisoning.perturbations import insert_image |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
css = """ |
|
.input-image { margin: auto !important } |
|
.plot-padding { padding: 20px; } |
|
""" |
|
|
|
def clf_evasion_evaluate(*args): |
|
''' |
|
Run a classification task evaluation |
|
''' |
|
attack = args[0] |
|
model_type = args[1] |
|
model_url = args[2] |
|
model_channels = args[3] |
|
model_height = args[4] |
|
model_width = args[5] |
|
model_classes = args[6] |
|
model_clip = args[7] |
|
model_upsample = args[8] |
|
attack_max_iter = args[9] |
|
attack_eps = args[10] |
|
attack_eps_steps = args[11] |
|
x_location = args[12] |
|
y_location = args[13] |
|
patch_height = args[14] |
|
patch_width = args[15] |
|
data_type = args[-1] |
|
|
|
if model_type == "Example": |
|
model = transformers.AutoModelForImageClassification.from_pretrained( |
|
'facebook/deit-tiny-distilled-patch16-224', |
|
ignore_mismatched_sizes=True, |
|
num_labels=10 |
|
) |
|
upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest') |
|
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) |
|
loss_fn = torch.nn.CrossEntropyLoss() |
|
|
|
hf_model = HuggingFaceClassifierPyTorch( |
|
model=model, |
|
loss=loss_fn, |
|
optimizer=optimizer, |
|
input_shape=(3, 32, 32), |
|
nb_classes=10, |
|
clip_values=(0, 1), |
|
processor=upsampler |
|
) |
|
model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt' |
|
hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device)) |
|
|
|
if data_type == "Example": |
|
(x_train, y_train), (_, _), _, _ = load_dataset('cifar10') |
|
x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32) |
|
y_train = np.argmax(y_train, axis=1) |
|
|
|
classes = np.unique(y_train) |
|
samples_per_class = 1 |
|
|
|
x_subset = [] |
|
y_subset = [] |
|
|
|
for c in classes: |
|
indices = y_train == c |
|
x_subset.append(x_train[indices][:samples_per_class]) |
|
y_subset.append(y_train[indices][:samples_per_class]) |
|
|
|
x_subset = np.concatenate(x_subset) |
|
y_subset = np.concatenate(y_subset) |
|
|
|
label_names = [ |
|
'airplane', |
|
'automobile', |
|
'bird', |
|
'cat', |
|
'deer', |
|
'dog', |
|
'frog', |
|
'horse', |
|
'ship', |
|
'truck', |
|
] |
|
|
|
outputs = hf_model.predict(x_subset) |
|
clean_preds = np.argmax(outputs, axis=1) |
|
clean_acc = np.mean(clean_preds == y_subset) |
|
benign_gallery_out = [] |
|
for i, im in enumerate(x_subset): |
|
benign_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] )) |
|
|
|
if attack == "PGD": |
|
attacker = ProjectedGradientDescentPyTorch(hf_model, max_iter=attack_max_iter, |
|
eps=attack_eps, eps_step=attack_eps_steps) |
|
x_adv = attacker.generate(x_subset) |
|
|
|
outputs = hf_model.predict(x_adv) |
|
adv_preds = np.argmax(outputs, axis=1) |
|
adv_acc = np.mean(adv_preds == y_subset) |
|
adv_gallery_out = [] |
|
for i, im in enumerate(x_adv): |
|
adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] )) |
|
|
|
delta = ((x_subset - x_adv) + 8/255) * 10 |
|
delta_gallery_out = delta.transpose(0, 2, 3, 1) |
|
|
|
if attack == "Adversarial Patch": |
|
scale_min = 0.3 |
|
scale_max = 1.0 |
|
rotation_max = 0 |
|
learning_rate = 5000. |
|
attacker = AdversarialPatchPyTorch(hf_model, scale_max=scale_max, |
|
scale_min=scale_min, |
|
rotation_max=rotation_max, |
|
learning_rate=learning_rate, |
|
max_iter=attack_max_iter, patch_type='square', |
|
patch_location=(x_location, y_location), |
|
patch_shape=(3, patch_height, patch_width)) |
|
patch, _ = attacker.generate(x_subset) |
|
x_adv = attacker.apply_patch(x_subset, scale=0.3) |
|
|
|
outputs = hf_model.predict(x_adv) |
|
adv_preds = np.argmax(outputs, axis=1) |
|
adv_acc = np.mean(adv_preds == y_subset) |
|
adv_gallery_out = [] |
|
for i, im in enumerate(x_adv): |
|
adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] )) |
|
|
|
delta_gallery_out = np.expand_dims(patch, 0).transpose(0,2,3,1) |
|
|
|
return benign_gallery_out, adv_gallery_out, delta_gallery_out, clean_acc, adv_acc |
|
|
|
def clf_poison_evaluate(*args): |
|
|
|
attack = args[0] |
|
model_type = args[1] |
|
trigger_image = args[2] |
|
target_class = args[3] |
|
data_type = args[-1] |
|
|
|
|
|
if model_type == "Example": |
|
model = transformers.AutoModelForImageClassification.from_pretrained( |
|
'facebook/deit-tiny-distilled-patch16-224', |
|
ignore_mismatched_sizes=True, |
|
num_labels=10 |
|
) |
|
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) |
|
loss_fn = torch.nn.CrossEntropyLoss() |
|
|
|
hf_model = HuggingFaceClassifierPyTorch( |
|
model=model, |
|
loss=loss_fn, |
|
optimizer=optimizer, |
|
input_shape=(3, 224, 224), |
|
nb_classes=10, |
|
clip_values=(0, 1), |
|
) |
|
|
|
if data_type == "Example": |
|
import torchvision |
|
transform = torchvision.transforms.Compose([ |
|
torchvision.transforms.Resize((224, 224)), |
|
torchvision.transforms.ToTensor(), |
|
]) |
|
train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform) |
|
labels = np.asarray(train_dataset.targets) |
|
classes = np.unique(labels) |
|
samples_per_class = 100 |
|
|
|
x_subset = [] |
|
y_subset = [] |
|
|
|
for c in classes: |
|
indices = np.where(labels == c)[0][:samples_per_class] |
|
for i in indices: |
|
x_subset.append(train_dataset[i][0]) |
|
y_subset.append(train_dataset[i][1]) |
|
|
|
x_subset = np.stack(x_subset) |
|
y_subset = np.asarray(y_subset) |
|
label_names = [ |
|
'fish', |
|
'dog', |
|
'cassette player', |
|
'chainsaw', |
|
'church', |
|
'french horn', |
|
'garbage truck', |
|
'gas pump', |
|
'golf ball', |
|
'parachutte', |
|
] |
|
|
|
if attack == "Backdoor": |
|
from PIL import Image |
|
im = Image.fromarray(trigger_image) |
|
im.save("./tmp.png") |
|
def poison_func(x): |
|
return insert_image( |
|
x, |
|
backdoor_path='./tmp.png', |
|
channels_first=True, |
|
random=False, |
|
x_shift=0, |
|
y_shift=0, |
|
size=(32, 32), |
|
mode='RGB', |
|
blend=0.8 |
|
) |
|
backdoor = PoisoningAttackBackdoor(poison_func) |
|
source_class = 0 |
|
target_class = label_names.index(target_class) |
|
poison_percent = 0.5 |
|
|
|
x_poison = np.copy(x_subset) |
|
y_poison = np.copy(y_subset) |
|
is_poison = np.zeros(len(x_subset)).astype(bool) |
|
|
|
indices = np.where(y_subset == source_class)[0] |
|
num_poison = int(poison_percent * len(indices)) |
|
|
|
for i in indices[:num_poison]: |
|
x_poison[i], _ = backdoor.poison(x_poison[i], []) |
|
y_poison[i] = target_class |
|
is_poison[i] = True |
|
|
|
poison_indices = np.where(is_poison)[0] |
|
hf_model.fit(x_poison, y_poison, nb_epochs=2) |
|
|
|
clean_x = x_poison[~is_poison] |
|
clean_y = y_poison[~is_poison] |
|
|
|
outputs = hf_model.predict(clean_x) |
|
clean_preds = np.argmax(outputs, axis=1) |
|
clean_acc = np.mean(clean_preds == clean_y) |
|
|
|
clean_out = [] |
|
for i, im in enumerate(clean_x): |
|
clean_out.append( (im.transpose(1,2,0), label_names[clean_preds[i]]) ) |
|
|
|
poison_x = x_poison[is_poison] |
|
poison_y = y_poison[is_poison] |
|
|
|
outputs = hf_model.predict(poison_x) |
|
poison_preds = np.argmax(outputs, axis=1) |
|
poison_acc = np.mean(poison_preds == poison_y) |
|
|
|
poison_out = [] |
|
for i, im in enumerate(poison_x): |
|
poison_out.append( (im.transpose(1,2,0), label_names[poison_preds[i]]) ) |
|
|
|
|
|
return clean_out, poison_out, clean_acc, poison_acc |
|
|
|
|
|
def show_params(type): |
|
''' |
|
Show model parameters based on selected model type |
|
''' |
|
if type!="Example": |
|
return gr.Column(visible=True) |
|
return gr.Column(visible=False) |
|
|
|
def run_inference(*args): |
|
model_type = args[0] |
|
model_url = args[1] |
|
model_channels = args[2] |
|
model_height = args[3] |
|
model_width = args[4] |
|
model_classes = args[5] |
|
model_clip = args[6] |
|
model_upsample = args[7] |
|
data_type = args[8] |
|
|
|
if model_type == "Example": |
|
model = transformers.AutoModelForImageClassification.from_pretrained( |
|
'facebook/deit-tiny-distilled-patch16-224', |
|
ignore_mismatched_sizes=True, |
|
num_labels=10 |
|
) |
|
upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest') |
|
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) |
|
loss_fn = torch.nn.CrossEntropyLoss() |
|
|
|
hf_model = HuggingFaceClassifierPyTorch( |
|
model=model, |
|
loss=loss_fn, |
|
optimizer=optimizer, |
|
input_shape=(3, 32, 32), |
|
nb_classes=10, |
|
clip_values=(0, 1), |
|
processor=upsampler |
|
) |
|
model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt' |
|
hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device)) |
|
|
|
if data_type == "Example": |
|
(x_train, y_train), (_, _), _, _ = load_dataset('cifar10') |
|
x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32) |
|
y_train = np.argmax(y_train, axis=1) |
|
|
|
classes = np.unique(y_train) |
|
samples_per_class = 5 |
|
|
|
x_subset = [] |
|
y_subset = [] |
|
|
|
for c in classes: |
|
indices = y_train == c |
|
x_subset.append(x_train[indices][:samples_per_class]) |
|
y_subset.append(y_train[indices][:samples_per_class]) |
|
|
|
x_subset = np.concatenate(x_subset) |
|
y_subset = np.concatenate(y_subset) |
|
|
|
label_names = [ |
|
'airplane', |
|
'automobile', |
|
'bird', |
|
'cat', |
|
'deer', |
|
'dog', |
|
'frog', |
|
'horse', |
|
'ship', |
|
'truck', |
|
] |
|
|
|
outputs = hf_model.predict(x_subset) |
|
clean_preds = np.argmax(outputs, axis=1) |
|
clean_acc = np.mean(clean_preds == y_subset) |
|
gallery_out = [] |
|
for i, im in enumerate(x_subset): |
|
gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] )) |
|
|
|
return gallery_out, clean_acc |
|
|
|
|
|
|
|
|
|
carbon_theme = Carbon() |
|
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo: |
|
import art |
|
text = art.__version__ |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Image(value="./art_lfai.png", show_label=False, show_download_button=False, width=100) |
|
with gr.Column(scale=20): |
|
gr.Markdown(f"<h1>Red-teaming HuggingFace with ART (v{text})</h1>", elem_classes="plot-padding") |
|
|
|
|
|
gr.Markdown('''This app guides you through a common workflow for assessing the robustness |
|
of HuggingFace models using standard datasets and state-of-the-art adversarial attacks |
|
found within the Adversarial Robustness Toolbox (ART).<br/><br/>Follow the instructions in each |
|
step below to carry out your own evaluation and determine the risks associated with using |
|
some of your favorite models! <b>#redteaming</b> <b>#trustworthyAI</b>''') |
|
|
|
|
|
with gr.Accordion("1. Model selection", open=False): |
|
|
|
gr.Markdown("Select a Hugging Face model to launch an adversarial attack against.") |
|
model_type = gr.Radio(label="Hugging Face Model", choices=["Example", "Other"], value="Example") |
|
with gr.Column(visible=False) as other_model: |
|
model_url = gr.Text(label="Model URL", |
|
placeholder="e.g. facebook/deit-tiny-distilled-patch16-224", |
|
value='facebook/deit-tiny-distilled-patch16-224') |
|
model_input_channels = gr.Text(label="Input channels", value=3) |
|
model_input_height = gr.Text(label="Input height", value=32) |
|
model_input_width = gr.Text(label="Input width", value=32) |
|
model_num_classes = gr.Text(label="Number of classes", value=10) |
|
model_clip_values = gr.Radio(label="Clip values", choices=[1, 255], value=1) |
|
model_upsample_scaling = gr.Slider(label="Upsample scale factor", minimum=1, maximum=10, value=7) |
|
|
|
model_type.change(show_params, model_type, other_model) |
|
|
|
with gr.Accordion("2. Data selection", open=False): |
|
gr.Markdown("This section enables you to select a dataset for evaluation or upload your own image.") |
|
data_type = gr.Radio(label="Hugging Face dataset", choices=["Example", "URL", "Local"], value="Example") |
|
with gr.Column(visible=False) as other_dataset: |
|
gr.Markdown("Coming soon.") |
|
data_type.change(show_params, data_type, other_dataset) |
|
|
|
with gr.Accordion("3. Model inference", open=False): |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
preds_gallery = gr.Gallery(label="Predictions", preview=False, show_download_button=True) |
|
with gr.Column(scale=2): |
|
clean_accuracy = gr.Number(label="Clean accuracy", |
|
info="The accuracy achieved by the model in normal (non-adversarial) conditions.") |
|
bt_run_inference = gr.Button("Run inference") |
|
bt_clear = gr.ClearButton(components=[preds_gallery, clean_accuracy]) |
|
|
|
bt_run_inference.click(run_inference, inputs=[model_type, model_url, model_input_channels, model_input_height, model_input_width, |
|
model_num_classes, model_clip_values, model_upsample_scaling, data_type], |
|
outputs=[preds_gallery, clean_accuracy]) |
|
|
|
|
|
with gr.Accordion("4. Run attack", open=False): |
|
|
|
gr.Markdown("In this section you can select the type of adversarial attack you wish to deploy against your selected model.") |
|
|
|
with gr.Accordion("Evasion", open=False): |
|
gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.") |
|
|
|
with gr.Accordion("Projected Gradient Descent", open=False): |
|
gr.Markdown("This attack uses PGD to identify adversarial examples.") |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1): |
|
attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False) |
|
max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=10) |
|
eps = gr.Slider(minimum=0.0001, maximum=255, label="Epslion", value=8/255) |
|
eps_steps = gr.Slider(minimum=0.0001, maximum=255, label="Epsilon steps", value=1/255) |
|
bt_eval_pgd = gr.Button("Evaluate") |
|
|
|
|
|
with gr.Column(scale=3): |
|
with gr.Row(): |
|
with gr.Column(): |
|
original_gallery = gr.Gallery(label="Original", preview=False, show_download_button=True) |
|
benign_output = gr.Label(num_top_classes=3, visible=False) |
|
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2) |
|
quality_plot = gr.LinePlot(label="Gradient Quality", x='iteration', y='value', color='metric', |
|
x_title='Iteration', y_title='Avg in Gradients (%)', |
|
caption="""Illustrates the average percent of zero, infinity |
|
or NaN gradients identified in images |
|
across all batches.""", elem_classes="plot-padding", visible=False) |
|
|
|
with gr.Column(): |
|
adversarial_gallery = gr.Gallery(label="Adversarial", preview=False, show_download_button=True) |
|
adversarial_output = gr.Label(num_top_classes=3, visible=False) |
|
robust_accuracy = gr.Number(label="Robust Accuracy", precision=2) |
|
|
|
with gr.Column(): |
|
delta_gallery = gr.Gallery(label="Added perturbation", preview=False, show_download_button=True) |
|
|
|
bt_eval_pgd.click(clf_evasion_evaluate, inputs=[attack, model_type, model_url, model_input_channels, model_input_height, model_input_width, |
|
model_num_classes, model_clip_values, model_upsample_scaling, |
|
max_iter, eps, eps_steps, attack, attack, attack, attack, data_type], |
|
outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy, |
|
robust_accuracy]) |
|
|
|
with gr.Accordion("Adversarial Patch", open=False): |
|
gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.") |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1): |
|
attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False) |
|
max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=10) |
|
x_location = gr.Slider(minimum=1, maximum=32, label="Location (x)", value=1) |
|
y_location = gr.Slider(minimum=1, maximum=32, label="Location (y)", value=1) |
|
patch_height = gr.Slider(minimum=1, maximum=32, label="Patch height", value=12) |
|
patch_width = gr.Slider(minimum=1, maximum=32, label="Patch width", value=12) |
|
eval_btn_patch = gr.Button("Evaluate") |
|
|
|
|
|
with gr.Column(scale=3): |
|
with gr.Row(): |
|
with gr.Column(): |
|
original_gallery = gr.Gallery(label="Original", preview=False, show_download_button=True) |
|
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2) |
|
|
|
with gr.Column(): |
|
adversarial_gallery = gr.Gallery(label="Adversarial", preview=False, show_download_button=True) |
|
robust_accuracy = gr.Number(label="Robust Accuracy", precision=2) |
|
|
|
with gr.Column(): |
|
delta_gallery = gr.Gallery(label="Patches", preview=False, show_download_button=True) |
|
|
|
eval_btn_patch.click(clf_evasion_evaluate, inputs=[attack, model_type, model_url, model_input_channels, model_input_height, model_input_width, |
|
model_num_classes, model_clip_values, model_upsample_scaling, |
|
max_iter, eps, eps_steps, x_location, y_location, patch_height, patch_width, data_type], |
|
outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy, |
|
robust_accuracy]) |
|
|
|
with gr.Accordion("Poisoning", open=False): |
|
|
|
with gr.Accordion("Backdoor"): |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False) |
|
target_class = gr.Radio(label="Target class", info="The class you wish to force the model to predict.", |
|
choices=['dog', |
|
'cassette player', |
|
'chainsaw', |
|
'church', |
|
'french horn', |
|
'garbage truck', |
|
'gas pump', |
|
'golf ball', |
|
'parachutte',], value='dog') |
|
trigger_image = gr.Image(label="Trigger Image", value="./baby-on-board.png") |
|
eval_btn_patch = gr.Button("Evaluate") |
|
with gr.Column(scale=2): |
|
clean_gallery = gr.Gallery(label="Clean", preview=False, show_download_button=True) |
|
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2) |
|
with gr.Column(scale=2): |
|
poison_gallery = gr.Gallery(label="Poisoned", preview=False, show_download_button=True) |
|
poison_success = gr.Number(label="Poison Success", precision=2) |
|
|
|
eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, model_type, trigger_image, target_class, data_type], |
|
outputs=[clean_gallery, poison_gallery, clean_accuracy, poison_success]) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
'''demo.launch(show_api=False, debug=True, share=False, |
|
server_name="0.0.0.0", |
|
server_port=7777, |
|
ssl_verify=False, |
|
max_threads=20)''' |
|
|
|
|
|
demo.launch(share=True, ssl_verify=False) |