Spaces:
Running
Running
adaptive
Browse files- index.html +25 -15
index.html
CHANGED
|
@@ -39,17 +39,14 @@
|
|
| 39 |
e.preventDefault();
|
| 40 |
if (!$(this).hasClass('selected')) {
|
| 41 |
|
| 42 |
-
console.log('event')
|
| 43 |
$('.formula').hide(200);
|
| 44 |
$('.formula-list > a').removeClass('selected');
|
| 45 |
$(this).addClass('selected');
|
| 46 |
var target = $(this).attr('href');
|
| 47 |
-
// alert(target)
|
| 48 |
-
console.log(target)
|
| 49 |
$(target).show(200);
|
| 50 |
}
|
| 51 |
});
|
| 52 |
-
|
| 53 |
})
|
| 54 |
</script>
|
| 55 |
|
|
@@ -253,15 +250,11 @@
|
|
| 253 |
<div class="container is-max-desktop">
|
| 254 |
<h2 class="title is-3">Neighborhood Relations of Benign Examples and AEs</h2>
|
| 255 |
<div class="columns is-centered">
|
| 256 |
-
<div class="column container-centered
|
| 257 |
<img src="./static/images/relations.jpg" alt="Neighborhood Relations of Benign Examples and AEs"/>
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
<div class="column has-text-justified is-four-fifths">
|
| 262 |
-
<p>
|
| 263 |
-
<strong>Figure 1. Neighborhood Relations of Benign Examples and AEs.</strong>
|
| 264 |
-
</p>
|
| 265 |
</div>
|
| 266 |
</div>
|
| 267 |
<div class="columns is-centered">
|
|
@@ -422,6 +415,23 @@
|
|
| 422 |
|
| 423 |
<div class="container is-max-desktop">
|
| 424 |
<h2 class="title is-3">Adaptive Attack</h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
<div class="columns is-centered">
|
| 426 |
<div class="column container-centered">
|
| 427 |
<div id="adaptive-loss-formula" class="container">
|
|
@@ -435,17 +445,17 @@
|
|
| 435 |
<span id="label-loss" class="formula" style="">
|
| 436 |
$$
|
| 437 |
\displaystyle
|
| 438 |
-
Loss_{
|
| 439 |
$$
|
| 440 |
</span>
|
| 441 |
<span id="representation-loss" class="formula" style="display: none;">
|
| 442 |
$$
|
| 443 |
\displaystyle
|
| 444 |
-
Loss_{
|
| 445 |
$$
|
| 446 |
</span>
|
| 447 |
<span id="total-loss" class="formula" style="display: none;">
|
| 448 |
-
$$\displaystyle \mathcal{L}_C(x+\delta, y_t) +
|
| 449 |
</span>
|
| 450 |
</div>
|
| 451 |
</div>
|
|
|
|
| 39 |
e.preventDefault();
|
| 40 |
if (!$(this).hasClass('selected')) {
|
| 41 |
|
|
|
|
| 42 |
$('.formula').hide(200);
|
| 43 |
$('.formula-list > a').removeClass('selected');
|
| 44 |
$(this).addClass('selected');
|
| 45 |
var target = $(this).attr('href');
|
|
|
|
|
|
|
| 46 |
$(target).show(200);
|
| 47 |
}
|
| 48 |
});
|
| 49 |
+
|
| 50 |
})
|
| 51 |
</script>
|
| 52 |
|
|
|
|
| 250 |
<div class="container is-max-desktop">
|
| 251 |
<h2 class="title is-3">Neighborhood Relations of Benign Examples and AEs</h2>
|
| 252 |
<div class="columns is-centered">
|
| 253 |
+
<div class="column container-centered">
|
| 254 |
<img src="./static/images/relations.jpg" alt="Neighborhood Relations of Benign Examples and AEs"/>
|
| 255 |
+
<p>
|
| 256 |
+
<strong>Figure 1. Neighborhood Relations of Benign Examples and AEs.</strong>
|
| 257 |
+
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
</div>
|
| 259 |
</div>
|
| 260 |
<div class="columns is-centered">
|
|
|
|
| 415 |
|
| 416 |
<div class="container is-max-desktop">
|
| 417 |
<h2 class="title is-3">Adaptive Attack</h2>
|
| 418 |
+
|
| 419 |
+
<div class="columns is-centered">
|
| 420 |
+
<div class="column has-text-justified">
|
| 421 |
+
<p>
|
| 422 |
+
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
| 423 |
+
and the detection strategy. For an SSL model with a feature extractor $$f$$, a projector $$h$$, and a classification head $$g$$,
|
| 424 |
+
the classification branch can be formulated as $$\mathbb{C} = f\circ g$$ and the representation branch as $$\mathbb{R} = f\circ h$$.
|
| 425 |
+
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
| 426 |
+
|
| 427 |
+
where $$\mathcal{S}$$ represents cosine similarity, $$k$$ represents the number of generated neighbors,
|
| 428 |
+
and the linear augmentation function $$W(x)=W(x,p);~p\sim P$$ randomly samples $$p$$ from the parameter distribution $$P$$ to generate different neighbors.
|
| 429 |
+
Note that we guarantee the generated neighbors are fixed each time by fixing the random seed. The adaptive adversaries perform attacks on the following objective function:
|
| 430 |
+
|
| 431 |
+
where $$\mathcal{L}_C$$ indicates classifier's loss function, $$y_t$$ is the targeted class, and $$\alpha$$ refers to a hyperparameter.
|
| 432 |
+
</div>
|
| 433 |
+
</div>
|
| 434 |
+
|
| 435 |
<div class="columns is-centered">
|
| 436 |
<div class="column container-centered">
|
| 437 |
<div id="adaptive-loss-formula" class="container">
|
|
|
|
| 445 |
<span id="label-loss" class="formula" style="">
|
| 446 |
$$
|
| 447 |
\displaystyle
|
| 448 |
+
Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
|
| 449 |
$$
|
| 450 |
</span>
|
| 451 |
<span id="representation-loss" class="formula" style="display: none;">
|
| 452 |
$$
|
| 453 |
\displaystyle
|
| 454 |
+
Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
|
| 455 |
$$
|
| 456 |
</span>
|
| 457 |
<span id="total-loss" class="formula" style="display: none;">
|
| 458 |
+
$$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
|
| 459 |
</span>
|
| 460 |
</div>
|
| 461 |
</div>
|