Tri4 commited on
Commit
b877366
·
verified ·
1 Parent(s): 6e13dba

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +7 -7
main.py CHANGED
@@ -38,25 +38,25 @@ def convert_size(bytes):
38
  return f"{bytes / 1024**2:.2f} MB"
39
 
40
  def transcribe(audio_path):
41
- print(f"Transcribing audio from: {audio_path}", flush=True)
42
 
43
  # Load audio and pad/trim it to fit 30 seconds
44
- print(" Loading and processing audio...", flush=True)
45
  audio = whisper.load_audio(audio_path)
46
  audio = whisper.pad_or_trim(audio)
47
 
48
  # Make log-Mel spectrogram and move to the same device as the model
49
- print(" Creating log-Mel spectrogram...", flush=True)
50
  mel = whisper.log_mel_spectrogram(audio).to(model.device)
51
 
52
  # Detect the spoken language
53
- print(" Detecting language...", flush=True)
54
  _, probs = model.detect_language(mel)
55
  language = max(probs, key=probs.get)
56
- print(f" Detected language: {language}", flush=True)
57
 
58
  # Decode the audio
59
- print(" Decoding audio...", flush=True)
60
  options = whisper.DecodingOptions(fp16=False)
61
  result = whisper.decode(model, mel, options)
62
 
@@ -106,7 +106,7 @@ def transcribe_audio():
106
  response_sent_time, _ = get_time()
107
 
108
  # Return the transcription, detected language, and timing information
109
- print(f" Transcription: {transcription}, Language: {language}\n", flush=True)
110
  return jsonify({
111
  "transcription": transcription,
112
  "language": language,
 
38
  return f"{bytes / 1024**2:.2f} MB"
39
 
40
  def transcribe(audio_path):
41
+ #print(f" Transcribing audio from: {audio_path}", flush=True)
42
 
43
  # Load audio and pad/trim it to fit 30 seconds
44
+ #print(" Loading and processing audio...", flush=True)
45
  audio = whisper.load_audio(audio_path)
46
  audio = whisper.pad_or_trim(audio)
47
 
48
  # Make log-Mel spectrogram and move to the same device as the model
49
+ #print(" Creating log-Mel spectrogram...", flush=True)
50
  mel = whisper.log_mel_spectrogram(audio).to(model.device)
51
 
52
  # Detect the spoken language
53
+ #print(" Detecting language...", flush=True)
54
  _, probs = model.detect_language(mel)
55
  language = max(probs, key=probs.get)
56
+ #print(f" Detected language: {language}", flush=True)
57
 
58
  # Decode the audio
59
+ #print(" Decoding audio...", flush=True)
60
  options = whisper.DecodingOptions(fp16=False)
61
  result = whisper.decode(model, mel, options)
62
 
 
106
  response_sent_time, _ = get_time()
107
 
108
  # Return the transcription, detected language, and timing information
109
+ print(f" Transcription: {transcription}, Language: {language}, Processing Time: {transcription_duration_seconds}\n", flush=True)
110
  return jsonify({
111
  "transcription": transcription,
112
  "language": language,