Spaces:
Sleeping
Sleeping
Varun Wadhwa
commited on
Logs
Browse files
app.py
CHANGED
@@ -121,14 +121,20 @@ def evaluate_model(model, dataloader, device):
|
|
121 |
all_preds = []
|
122 |
all_labels = []
|
123 |
|
124 |
-
test = True
|
125 |
-
test2 = True
|
126 |
# Disable gradient calculations
|
127 |
with torch.no_grad():
|
128 |
for batch in dataloader:
|
129 |
input_ids = batch['input_ids'].to(device)
|
130 |
attention_mask = batch['attention_mask'].to(device)
|
131 |
labels = batch['labels'].to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# Forward pass to get logits
|
134 |
outputs = model(input_ids, attention_mask=attention_mask)
|
@@ -136,17 +142,9 @@ def evaluate_model(model, dataloader, device):
|
|
136 |
|
137 |
# Get predictions
|
138 |
preds = torch.argmax(logits, dim=-1).cpu().numpy()
|
139 |
-
if test or test2:
|
140 |
-
if test:
|
141 |
-
test2 = False
|
142 |
-
test = False
|
143 |
-
print(len(preds))
|
144 |
-
print(len(labels))
|
145 |
-
print(preds)
|
146 |
-
print(labels)
|
147 |
|
148 |
all_preds.extend(preds)
|
149 |
-
all_labels.extend(labels
|
150 |
|
151 |
# Calculate evaluation metrics
|
152 |
print("evaluate_model sizes")
|
|
|
121 |
all_preds = []
|
122 |
all_labels = []
|
123 |
|
|
|
|
|
124 |
# Disable gradient calculations
|
125 |
with torch.no_grad():
|
126 |
for batch in dataloader:
|
127 |
input_ids = batch['input_ids'].to(device)
|
128 |
attention_mask = batch['attention_mask'].to(device)
|
129 |
labels = batch['labels'].to(device)
|
130 |
+
x = len(labels[0])
|
131 |
+
print(labels[0])
|
132 |
+
for l in labels:
|
133 |
+
if len(l) != x:
|
134 |
+
print(len(l))
|
135 |
+
print(l)
|
136 |
+
break
|
137 |
+
|
138 |
|
139 |
# Forward pass to get logits
|
140 |
outputs = model(input_ids, attention_mask=attention_mask)
|
|
|
142 |
|
143 |
# Get predictions
|
144 |
preds = torch.argmax(logits, dim=-1).cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
all_preds.extend(preds)
|
147 |
+
all_labels.extend(labels)
|
148 |
|
149 |
# Calculate evaluation metrics
|
150 |
print("evaluate_model sizes")
|