Spaces:
Sleeping
Sleeping
Varun Wadhwa
commited on
Logs
Browse files
app.py
CHANGED
@@ -121,6 +121,7 @@ def evaluate_model(model, dataloader, device):
|
|
121 |
all_preds = []
|
122 |
all_labels = []
|
123 |
|
|
|
124 |
# Disable gradient calculations
|
125 |
with torch.no_grad():
|
126 |
for batch in dataloader:
|
@@ -134,6 +135,10 @@ def evaluate_model(model, dataloader, device):
|
|
134 |
|
135 |
# Get predictions
|
136 |
preds = torch.argmax(logits, dim=-1).cpu().numpy()
|
|
|
|
|
|
|
|
|
137 |
|
138 |
all_preds.extend(preds)
|
139 |
all_labels.extend(labels.cpu().numpy())
|
@@ -142,10 +147,6 @@ def evaluate_model(model, dataloader, device):
|
|
142 |
print("evaluate_model sizes")
|
143 |
print(len(all_preds[0]))
|
144 |
print(len(all_labels[0]))
|
145 |
-
for p in all_preds:
|
146 |
-
if len(p) != len(all_preds[0]):
|
147 |
-
print(len(p))
|
148 |
-
print(p)
|
149 |
all_preds = np.asarray(all_preds, dtype=np.float32)
|
150 |
all_labels = np.asarray(all_labels, dtype=np.float32)
|
151 |
print("Flattened sizes")
|
|
|
121 |
all_preds = []
|
122 |
all_labels = []
|
123 |
|
124 |
+
test = True
|
125 |
# Disable gradient calculations
|
126 |
with torch.no_grad():
|
127 |
for batch in dataloader:
|
|
|
135 |
|
136 |
# Get predictions
|
137 |
preds = torch.argmax(logits, dim=-1).cpu().numpy()
|
138 |
+
if test:
|
139 |
+
test = False
|
140 |
+
print(preds)
|
141 |
+
print(labels)
|
142 |
|
143 |
all_preds.extend(preds)
|
144 |
all_labels.extend(labels.cpu().numpy())
|
|
|
147 |
print("evaluate_model sizes")
|
148 |
print(len(all_preds[0]))
|
149 |
print(len(all_labels[0]))
|
|
|
|
|
|
|
|
|
150 |
all_preds = np.asarray(all_preds, dtype=np.float32)
|
151 |
all_labels = np.asarray(all_labels, dtype=np.float32)
|
152 |
print("Flattened sizes")
|