File size: 19,679 Bytes
3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb b496d0b 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
# import gradio as gr
# from langchain_mistralai.chat_models import ChatMistralAI
# from langchain.prompts import ChatPromptTemplate
# import os
# from pathlib import Path
# from typing import List, Dict, Optional
# import json
# import faiss
# import numpy as np
# from langchain.schema import Document
# from sentence_transformers import SentenceTransformer
# import pickle
# import re
# os.environ.get('HUGGINGFACE_TOKEN')
# class RAGLoader:
# def __init__(self,
# docs_folder: str = "./docs",
# splits_folder: str = "./splits",
# index_folder: str = "./index",):
# # model_name: str = "intfloat/multilingual-e5-large")
# """
# Initialise le RAG Loader
# Args:
# docs_folder: Dossier contenant les documents sources
# splits_folder: Dossier où seront stockés les morceaux de texte
# index_folder: Dossier où sera stocké l'index FAISS
# model_name: Nom du modèle SentenceTransformer à utiliser
# """
# self.docs_folder = Path(docs_folder)
# self.splits_folder = Path(splits_folder)
# self.index_folder = Path(index_folder)
# # self.model_name = model_name
# # Créer les dossiers s'ils n'existent pas
# self.splits_folder.mkdir(parents=True, exist_ok=True)
# self.index_folder.mkdir(parents=True, exist_ok=True)
# # Chemins des fichiers
# self.splits_path = self.splits_folder / "splits.json"
# self.index_path = self.index_folder / "faiss.index"
# self.documents_path = self.index_folder / "documents.pkl"
# # Initialiser le modèle
# # self.model = None
# self.index = None
# self.indexed_documents = None
# def encode(self,payload):
# token = os.environ.get('HUGGINGFACE_TOKEN')
# API_URL = "https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large"
# headers = {"Authorization": "Bearer {token}"}
# response = requests.post(API_URL, headers=headers, json=payload)
# return response.json()
# def load_and_split_texts(self) -> List[Document]:
# """
# Charge les textes du dossier docs, les découpe en morceaux et les sauvegarde
# dans un fichier JSON unique.
# Returns:
# Liste de Documents contenant les morceaux de texte et leurs métadonnées
# """
# documents = []
# # Vérifier d'abord si les splits existent déjà
# if self._splits_exist():
# print("Chargement des splits existants...")
# return self._load_existing_splits()
# print("Création de nouveaux splits...")
# # Parcourir tous les fichiers du dossier docs
# for file_path in self.docs_folder.glob("*.txt"):
# with open(file_path, 'r', encoding='utf-8') as file:
# text = file.read()
# # Découper le texte en phrases
# # chunks = [chunk.strip() for chunk in text.split('.') if chunk.strip()]
# chunks = [s.strip() for s in re.split(r'(?<=[.!?])\s+', text) if s.strip()]
# # Créer un Document pour chaque morceau
# for i, chunk in enumerate(chunks):
# doc = Document(
# page_content=chunk,
# metadata={
# 'source': file_path.name,
# 'chunk_id': i,
# 'total_chunks': len(chunks)
# }
# )
# documents.append(doc)
# # Sauvegarder tous les splits dans un seul fichier JSON
# self._save_splits(documents)
# print(f"Nombre total de morceaux créés: {len(documents)}")
# return documents
# def _splits_exist(self) -> bool:
# """Vérifie si le fichier de splits existe"""
# return self.splits_path.exists()
# def _save_splits(self, documents: List[Document]):
# """Sauvegarde tous les documents découpés dans un seul fichier JSON"""
# splits_data = {
# 'splits': [
# {
# 'text': doc.page_content,
# 'metadata': doc.metadata
# }
# for doc in documents
# ]
# }
# with open(self.splits_path, 'w', encoding='utf-8') as f:
# json.dump(splits_data, f, ensure_ascii=False, indent=2)
# def _load_existing_splits(self) -> List[Document]:
# """Charge les splits depuis le fichier JSON unique"""
# with open(self.splits_path, 'r', encoding='utf-8') as f:
# splits_data = json.load(f)
# documents = [
# Document(
# page_content=split['text'],
# metadata=split['metadata']
# )
# for split in splits_data['splits']
# ]
# print(f"Nombre de splits chargés: {len(documents)}")
# return documents
# def load_index(self) -> bool:
# """
# Charge l'index FAISS et les documents associés s'ils existent
# Returns:
# bool: True si l'index a été chargé, False sinon
# """
# if not self._index_exists():
# print("Aucun index trouvé.")
# return False
# print("Chargement de l'index existant...")
# try:
# # Charger l'index FAISS
# self.index = faiss.read_index(str(self.index_path))
# # Charger les documents associés
# with open(self.documents_path, 'rb') as f:
# self.indexed_documents = pickle.load(f)
# print(f"Index chargé avec {self.index.ntotal} vecteurs")
# return True
# except Exception as e:
# print(f"Erreur lors du chargement de l'index: {e}")
# return False
# def create_index(self, documents: Optional[List[Document]] = None) -> bool:
# """
# Crée un nouvel index FAISS à partir des documents.
# Si aucun document n'est fourni, charge les documents depuis le fichier JSON.
# Args:
# documents: Liste optionnelle de Documents à indexer
# Returns:
# bool: True si l'index a été créé avec succès, False sinon
# """
# try:
# # # Initialiser le modèle si nécessaire
# # if self.model is None:
# # print("Chargement du modèle...")
# # self.model = SentenceTransformer(self.model_name)
# # Charger les documents si non fournis
# if documents is None:
# documents = self.load_and_split_texts()
# if not documents:
# print("Aucun document à indexer.")
# return False
# print("Création des embeddings...")
# texts = [doc.page_content for doc in documents]
# embeddings = self.encode(texts)
# # Initialiser l'index FAISS
# dimension = embeddings.shape[1]
# self.index = faiss.IndexFlatL2(dimension)
# # Ajouter les vecteurs à l'index
# self.index.add(np.array(embeddings).astype('float32'))
# # Sauvegarder l'index
# print("Sauvegarde de l'index...")
# faiss.write_index(self.index, str(self.index_path))
# # Sauvegarder les documents associés
# self.indexed_documents = documents
# with open(self.documents_path, 'wb') as f:
# pickle.dump(documents, f)
# print(f"Index créé avec succès : {self.index.ntotal} vecteurs")
# return True
# except Exception as e:
# print(f"Erreur lors de la création de l'index: {e}")
# return False
# def _index_exists(self) -> bool:
# """Vérifie si l'index et les documents associés existent"""
# return self.index_path.exists() and self.documents_path.exists()
# def get_retriever(self, k: int = 10):
# """
# Crée un retriever pour l'utilisation avec LangChain
# Args:
# k: Nombre de documents similaires à retourner
# Returns:
# Callable: Fonction de recherche compatible avec LangChain
# """
# if self.index is None:
# if not self.load_index():
# if not self.create_index():
# raise ValueError("Impossible de charger ou créer l'index")
# # if self.model is None:
# # self.model = SentenceTransformer(self.model_name)
# def retriever_function(query: str) -> List[Document]:
# # Créer l'embedding de la requête
# query_embedding = self.encode([query])[0]
# # Rechercher les documents similaires
# distances, indices = self.index.search(
# np.array([query_embedding]).astype('float32'),
# k
# )
# # Retourner les documents trouvés
# results = []
# for idx in indices[0]:
# if idx != -1: # FAISS retourne -1 pour les résultats invalides
# results.append(self.indexed_documents[idx])
# return results
# return retriever_function
# # Initialize the RAG system
# llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key="QK0ZZpSxQbCEVgOLtI6FARQVmBYc6WGP")
# rag_loader = RAGLoader()
# retriever = rag_loader.get_retriever(k=10)
# prompt_template = ChatPromptTemplate.from_messages([
# ("system", """أنت مساعد مفيد يجيب على الأسئلة باللغة العربية باستخدام المعلومات المقدمة.
# استخدم المعلومات التالية للإجابة على السؤال:
# {context}
# إذا لم تكن المعلومات كافية للإجابة على السؤال بشكل كامل، قم بتوضيح ذلك.
# أجب بشكل موجز ودقيق."""),
# ("human", "{question}")
# ])
# def process_question(question: str) -> tuple[str, str]:
# """
# Process a question and return both the answer and the relevant context
# """
# relevant_docs = retriever(question)
# context = "\n".join([doc.page_content for doc in relevant_docs])
# prompt = prompt_template.format_messages(
# context=context,
# question=question
# )
# response = llm(prompt)
# return response.content, context
# def gradio_interface(question: str) -> tuple[str, str]:
# """
# Gradio interface function that returns both answer and context as a tuple
# """
# return process_question(question)
# # Custom CSS for right-aligned text in textboxes
# custom_css = """
# .rtl-text {
# text-align: right !important;
# direction: rtl !important;
# }
# .rtl-text textarea {
# text-align: right !important;
# direction: rtl !important;
# }
# """
# # Define the Gradio interface
# with gr.Blocks(css=custom_css) as iface:
# with gr.Column():
# input_text = gr.Textbox(
# label="السؤال",
# placeholder="اكتب سؤالك هنا...",
# lines=2,
# elem_classes="rtl-text"
# )
# answer_box = gr.Textbox(
# label="الإجابة",
# lines=4,
# elem_classes="rtl-text"
# )
# context_box = gr.Textbox(
# label="السياق المستخدم",
# lines=8,
# elem_classes="rtl-text"
# )
# submit_btn = gr.Button("إرسال")
# submit_btn.click(
# fn=gradio_interface,
# inputs=input_text,
# outputs=[answer_box, context_box]
# )
# # Launch the interface
# if __name__ == "__main__":
# iface.launch(share=True)
import gradio as gr
from langchain_mistralai.chat_models import ChatMistralAI
from langchain.prompts import ChatPromptTemplate
import os
from pathlib import Path
import json
import faiss
import numpy as np
from langchain.schema import Document
import pickle
import re
import requests
from functools import lru_cache
import torch
from sentence_transformers import SentenceTransformer
import threading
from queue import Queue
import concurrent.futures
class OptimizedRAGLoader:
def __init__(self,
docs_folder: str = "./docs",
splits_folder: str = "./splits",
index_folder: str = "./index"):
self.docs_folder = Path(docs_folder)
self.splits_folder = Path(splits_folder)
self.index_folder = Path(index_folder)
# Create folders if they don't exist
for folder in [self.splits_folder, self.index_folder]:
folder.mkdir(parents=True, exist_ok=True)
# File paths
self.splits_path = self.splits_folder / "splits.json"
self.index_path = self.index_folder / "faiss.index"
self.documents_path = self.index_folder / "documents.pkl"
# Initialize components
self.index = None
self.indexed_documents = None
# Initialize encoder model
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.encoder = SentenceTransformer("intfloat/multilingual-e5-large")
self.encoder.to(self.device)
# Initialize thread pool
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
# Initialize response cache
self.response_cache = {}
@lru_cache(maxsize=1000)
def encode(self, text: str):
"""Cached encoding function"""
with torch.no_grad():
embeddings = self.encoder.encode(
text,
convert_to_numpy=True,
normalize_embeddings=True
)
return embeddings
def batch_encode(self, texts: list):
"""Batch encoding for multiple texts"""
with torch.no_grad():
embeddings = self.encoder.encode(
texts,
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=True,
show_progress_bar=False
)
return embeddings
def load_and_split_texts(self):
if self._splits_exist():
return self._load_existing_splits()
documents = []
futures = []
for file_path in self.docs_folder.glob("*.txt"):
future = self.executor.submit(self._process_file, file_path)
futures.append(future)
for future in concurrent.futures.as_completed(futures):
documents.extend(future.result())
self._save_splits(documents)
return documents
def _process_file(self, file_path):
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
chunks = [s.strip() for s in re.split(r'(?<=[.!?])\s+', text) if s.strip()]
return [
Document(
page_content=chunk,
metadata={
'source': file_path.name,
'chunk_id': i,
'total_chunks': len(chunks)
}
)
for i, chunk in enumerate(chunks)
]
def create_index(self, documents=None):
if documents is None:
documents = self.load_and_split_texts()
if not documents:
return False
texts = [doc.page_content for doc in documents]
embeddings = self.batch_encode(texts)
dimension = embeddings.shape[1]
self.index = faiss.IndexFlatL2(dimension)
if torch.cuda.is_available():
# Use GPU for FAISS if available
res = faiss.StandardGpuResources()
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
self.index.add(np.array(embeddings).astype('float32'))
self.indexed_documents = documents
# Save index and documents
cpu_index = faiss.index_gpu_to_cpu(self.index) if torch.cuda.is_available() else self.index
faiss.write_index(cpu_index, str(self.index_path))
with open(self.documents_path, 'wb') as f:
pickle.dump(documents, f)
return True
def get_retriever(self, k: int = 10):
if self.index is None:
if not self.load_index():
if not self.create_index():
raise ValueError("Unable to load or create index")
def retriever_function(query: str) -> list:
# Check cache first
cache_key = f"{query}_{k}"
if cache_key in self.response_cache:
return self.response_cache[cache_key]
query_embedding = self.encode(query)
distances, indices = self.index.search(
np.array([query_embedding]).astype('float32'),
k
)
results = [
self.indexed_documents[idx]
for idx in indices[0]
if idx != -1
]
# Cache the results
self.response_cache[cache_key] = results
return results
return retriever_function
# Initialize components
llm = ChatMistralAI(
model="mistral-large-latest",
mistral_api_key="QK0ZZpSxQbCEVgOLtI6FARQVmBYc6WGP",
temperature=0.1 # Lower temperature for faster responses
)
rag_loader = OptimizedRAGLoader()
retriever = rag_loader.get_retriever(k=5) # Reduced k for faster retrieval
# Cache for processed questions
question_cache = {}
def process_question(question: str) -> tuple[str, str]:
# Check cache first
if question in question_cache:
return question_cache[question]
relevant_docs = retriever(question)
context = "\n".join([doc.page_content for doc in relevant_docs])
prompt = prompt_template.format_messages(
context=context,
question=question
)
response = llm(prompt)
result = (response.content, context)
# Cache the result
question_cache[question] = result
return result
# Gradio interface with queue
with gr.Blocks(css=custom_css) as iface:
with gr.Column():
input_text = gr.Textbox(
label="السؤال",
placeholder="اكتب سؤالك هنا...",
lines=2,
elem_classes="rtl-text"
)
with gr.Row():
answer_box = gr.Textbox(
label="الإجابة",
lines=4,
elem_classes="rtl-text"
)
context_box = gr.Textbox(
label="السياق المستخدم",
lines=8,
elem_classes="rtl-text"
)
submit_btn = gr.Button("إرسال")
submit_btn.click(
fn=process_question,
inputs=input_text,
outputs=[answer_box, context_box],
api_name="predict"
)
# Launch with optimized settings
if __name__ == "__main__":
iface.queue(concurrency_count=3).launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
enable_queue=True
) |