Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer | |
from model import TransformerModel # Replace with your model class | |
import gradio as gr | |
# Load the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer") | |
# Load the model | |
def load_model(checkpoint_path): | |
# Initialize the model (replace with your model's configuration) | |
model = TransformerModel( | |
vocab_size=49152, | |
hidden_size=576, | |
num_hidden_layers=30, | |
num_attention_heads=9, | |
intermediate_size=1536, | |
num_key_value_heads=3, | |
max_position_embeddings=2048, | |
rms_norm_eps=1e-5, | |
hidden_act="silu", | |
tie_word_embeddings=True, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
# Load the checkpoint | |
checkpoint = torch.load(checkpoint_path, map_location="cpu") | |
model.load_state_dict(checkpoint["model_state_dict"]) | |
model.eval() | |
return model | |
# Load the model | |
model = load_model("checkpoint_5050_quantized.pt") | |
# Function to generate text | |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50): | |
# Encode the prompt | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
# Generate text | |
with torch.no_grad(): | |
output_ids = model.generate( | |
input_ids, | |
max_length=max_length, | |
temperature=temperature, | |
top_k=top_k, | |
do_sample=True, | |
) | |
# Decode the generated text | |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return generated_text | |
# Gradio Interface | |
def gradio_generate_text(prompt, max_length, temperature, top_k): | |
return generate_text(prompt, max_length, temperature, top_k) | |
# Create the Gradio app | |
interface = gr.Interface( | |
fn=gradio_generate_text, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."), | |
gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"), | |
gr.Slider(minimum=1, maximum=100, value=50, label="Top-k Sampling"), | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="Text Generation with SMOL-LM2", | |
description="Generate text using the SMOL-LM2 model.", | |
) | |
# Launch the app | |
interface.launch() |