smol-lm2-demo / app.py
Tousifahamed's picture
Upload app.py
57a4ca3 verified
raw
history blame
2.66 kB
import torch
torch.backends.quantized.engine = 'fbgemm'
print("PyTorch version:", torch.__version__)
print("Supported quantized engines:", torch.backends.quantized.supported_engines)
import torch.nn as nn
from transformers import AutoTokenizer
from model import TransformerModel
import gradio as gr
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
def load_quantized_model(checkpoint_path):
# 1. Create the float model
model = TransformerModel(
vocab_size=49152,
hidden_size=576,
num_hidden_layers=30,
num_attention_heads=9,
intermediate_size=1536,
num_key_value_heads=3,
max_position_embeddings=2048,
rms_norm_eps=1e-5,
hidden_act="silu",
tie_word_embeddings=True,
)
# 2. Load the actual checkpoint weights
# If "quantized_model.pt" is a state_dict, do:
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint) # or checkpoint["model_state_dict"] if saved that way
model.eval()
# 3. Dynamically quantize relevant layers
# For embeddings, we typically use torch.quint8
# so we don't run into any embedding dtype errors
quantized_model = torch.quantization.quantize_dynamic(
model,
{nn.Linear, nn.Embedding},
dtype=torch.quint8
)
return quantized_model
# 4. Load the quantized model
model = load_quantized_model("quantized_model.pt")
# 5. Inference function
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
do_sample=True,
)
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return generated_text
# 6. Gradio interface
interface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"),
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, label="Top-k Sampling"),
],
outputs=gr.Textbox(label="Generated Text"),
title="Text Generation with Quantized SMOL-LM2",
description="Generate text using a dynamically quantized SMOL-LM2 model.",
)
interface.launch()