import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_path = "modernbert.bin"
huggingface_model_url = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_1.load_state_dict(torch.load(model_path, map_location=device))
model_1.to(device).eval()
model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_2.load_state_dict(torch.hub.load_state_dict_from_url(huggingface_model_url, map_location=device))
model_2.to(device).eval()
label_mapping = {
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
39: 'text-davinci-002', 40: 'text-davinci-003'
}
def classify_text(text):
if not text.strip():
return "----"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
logits_1 = model_1(**inputs).logits
logits_2 = model_2(**inputs).logits
softmax_1 = torch.softmax(logits_1, dim=1)
softmax_2 = torch.softmax(logits_2, dim=1)
averaged_probabilities = (softmax_1 + softmax_2) / 2
probabilities = averaged_probabilities[0]
ai_probs = probabilities.clone()
ai_probs[24] = 0
ai_total_prob = ai_probs.sum().item() * 100
human_prob = 100 - ai_total_prob
ai_argmax_index = torch.argmax(ai_probs).item()
ai_argmax_model = label_mapping[ai_argmax_index]
if human_prob > ai_total_prob:
result_message = (
f"✅ - The text is **{human_prob:.2f}%** likely Human written."
)
else:
result_message = (
f"🤖 - The text is **{ai_total_prob:.2f}%** likely AI generated.\n\n"
f"**Identified AI Model:** {ai_argmax_model}"
)
return result_message
title = "AI Text Detector"
description = """
This tool uses the **ModernBERT** model to identify whether a given text was written by a human or generated by artificial intelligence (AI).