File size: 4,965 Bytes
c57c848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e11fc
c57c848
 
 
 
 
 
328a8f1
18e11fc
c57c848
da1ebea
5b36832
c57c848
da1ebea
18e11fc
c57c848
18e11fc
 
 
 
 
 
fcf78e8
0fd14a7
c57c848
9be0260
 
 
fcf78e8
0fd14a7
328a8f1
0fd14a7
c57c848
da1ebea
 
911b4eb
18e11fc
c57c848
 
 
5e5a50a
 
fcf78e8
da1ebea
fcf78e8
9be0260
5b36832
 
 
 
 
 
 
fcf78e8
5e5a50a
da1ebea
5e5a50a
fcf78e8
c57c848
 
 
 
 
 
fcf78e8
 
 
 
c57c848
 
 
 
328a8f1
c57c848
da1ebea
 
c57c848
da1ebea
c57c848
da1ebea
c57c848
da1ebea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c57c848
911b4eb
 
 
 
 
 
 
 
 
c57c848
911b4eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model_path = "modernbert.bin"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
model = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()

label_mapping = {
    0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
    6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
    11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small', 
    14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
    18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o', 
    22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
    27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
    31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
    35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
    39: 'text-davinci-002', 40: 'text-davinci-003'
}

def classify_text(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True)
    inputs = {key: value.to(device) for key, value in inputs.items()}
    
    with torch.no_grad():
        outputs = model(**inputs)
        probabilities = torch.softmax(outputs.logits, dim=1)[0]
        predicted_class = torch.argmax(probabilities).item()
        confidence = probabilities[predicted_class].item() * 100

        if predicted_class == 24:
            prediction_label = f"✅ - The text is <span class='highlight-human'>**{confidence:.2f}%** likely <b>Human written</b>.</span>"
            model_info = ""  
        else:
            prediction_label = f"🤖 - The text is <span class='highlight-ai'>**{confidence:.2f}%** likely <b>AI generated</b>.</span>"
            model_info = f"**Identified AI Model:** {label_mapping[predicted_class]}"

    result_message = f"**Result:**\n\n{prediction_label}"
    if model_info:
        result_message += f"\n\n{model_info}"
        
    return result_message

title = "Detect AI Generated Texts!"
description = """

Detect AI-generated texts with precision using the new **ModernBERT** model, fine-tuned for machine-generated text detection, and capable of identifying 40 different models.

-- 🤖 - **Identify AI Models:** Reveals which LLM generated the text if detected as AI.
-- ✅ - **Human Verification:** Marks human-written text with a green checkmark.  

**Note:** The longer the text, the better the detection accuracy.
"""

bottom_text = "**AI detection tool by SzegedAI**"

iface = gr.Blocks(css="""
    #text_input_box {
        border-radius: 10px;
        border: 2px solid #4CAF50;
        font-size: 18px;
        padding: 15px;
        margin-bottom: 20px;
        width: 70%;
        box-sizing: border-box;
        margin: auto;
        background-color: #1E1E2F;
    }
    #result_output_box {
        border-radius: 10px;
        border: 2px solid #4CAF50;
        font-size: 18px;
        padding: 15px;
        background-color: #2E2E3F;
        margin-top: 20px;
        width: 50%;
        box-sizing: border-box;
        text-align: center;
        margin: auto;
    }
    body {
        background: #1E1E2F;
        color: #E1E1E6;
        font-family: 'Aptos', sans-serif;
        padding: 20px;
        display: flex;
        justify-content: center;
        align-items: center;
        height: 100vh;
    }
    .gradio-container {
        border: 2px solid #4CAF50;
        border-radius: 15px;
        padding: 30px;
        box-shadow: 0px 0px 20px rgba(0,255,0,0.6);
        max-width: 700px;
        margin: auto;
    }
    h1 {
        text-align: center;
        font-size: 36px;
        font-weight: bold;
    }
    h2 {
        text-align: left;
        font-size: 28px;
    }
    .highlight-human {
        color: #4CAF50;
        font-weight: bold;
        background: rgba(76, 175, 80, 0.2);
        padding: 5px;
        border-radius: 8px;
    }
    .highlight-ai {
        color: #FF5733;
        font-weight: bold;
        background: rgba(255, 87, 51, 0.2);
        padding: 5px;
        border-radius: 8px;
    }
    #bottom_text {
        text-align: center;
        margin-top: 50px;
        font-weight: bold;
        font-size: 20px;
        color: #E1E1E6;
    }
""")

with iface:
    gr.Markdown(f"# {title}")
    gr.Markdown(description)
    text_input = gr.Textbox(label="Enter Text for Analysis", placeholder="Type or paste your content here...", elem_id="text_input_box", lines=5)
    result_output = gr.Markdown("**Results will appear here...**", elem_id="result_output_box")
    text_input.change(classify_text, inputs=text_input, outputs=result_output)
    gr.Markdown(bottom_text, elem_id="bottom_text")

iface.launch(share=True)