File size: 3,236 Bytes
3d446a2
 
488aaf5
 
3d446a2
 
cd2da70
3d446a2
488aaf5
 
 
53ad954
488aaf5
 
 
 
 
3d446a2
488aaf5
3d446a2
488aaf5
3d446a2
 
 
 
 
 
 
488aaf5
 
3d446a2
488aaf5
3d446a2
488aaf5
 
 
3d446a2
 
488aaf5
3d446a2
 
488aaf5
 
 
3d446a2
488aaf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d446a2
488aaf5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import torch
import gradio as gr
import inversion
import numpy as np
from PIL import Image
import sa_handler

device = "cuda" if torch.cuda.is_available() else "cpu"
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, scheduler=scheduler).to(device)

def run(image, src_style, src_prompt, prompts, shared_score_shift, shared_score_scale, guidance_scale, num_inference_steps, large, seed):
    prompts = prompts.splitlines()
    dim, d = (1024, 128) if large else (512, 64)
    image = image.resize((dim, dim))
    x0 = np.array(image)
    zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
    prompts.insert(0, src_prompt)

    shared_score_shift = np.log(shared_score_shift)
    handler = sa_handler.Handler(pipeline)
    sa_args = sa_handler.StyleAlignedArgs(
        share_group_norm=True, share_layer_norm=True, share_attention=True,
        adain_queries=True, adain_keys=True, adain_values=False,
        shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
    handler.register(sa_args)

    for i in range(1, len(prompts)):
        prompts[i] = f'{prompts[i]}, {src_style}.'

    zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)
    g_cpu = torch.Generator(device='cpu')
    if seed > 0:
        g_cpu.manual_seed(seed)
    latents = torch.randn(len(prompts), 4, d, d, device='cpu', generator=g_cpu, dtype=pipeline.unet.dtype,).to(device)
    latents[0] = zT

    images_a = pipeline(prompts, latents=latents, callback_on_step_end=inversion_callback, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images

    handler.remove()
    torch.cuda.empty_cache()
    images_pil = [Image.fromarray((img * 255).astype(np.uint8)) for img in images_a]
    return images_pil

with gr.Blocks() as demo:
    with gr.Markdown("""
    # Welcome to Tonic's Stable Style Align
    Add a reference picture , describe the style and add prompts to generate images in that style. It's the most interesting with your own art ! 
    """)
    with gr.Row():
        gr.Image(label="Reference image", type="pil")
    with gr.Row():
        gr.Textbox(label="Describe the reference style")
        gr.Textbox(label="Describe the reference image")
        gr.Textbox(label="Prompts to generate images (separate with new lines)", lines=5)
    with gr.Accordion(label="Advanced Settings"):
        with gr.Row():
            gr.Number(value=1.1, label="shared_score_shift", min=1.0, max=2.0)
            gr.Number(value=1.0, label="shared_score_scale", min=0.0, max=1.0)
            gr.Number(value=10.0, label="guidance_scale", min=5.0, max=20.0)
            gr.Number(value=50, label="num_inference_steps", min=1, max=100, precision=0)
            gr.Checkbox(False, label="Large (1024x1024)")
            gr.Number(value=0, label="seed (0 for random)", min=0, max=10000, precision=0)
    with gr.Row():
        gr.Gallery()

demo.launch()