Spaces:
Paused
Paused
File size: 3,236 Bytes
3d446a2 488aaf5 3d446a2 cd2da70 3d446a2 488aaf5 53ad954 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import torch
import gradio as gr
import inversion
import numpy as np
from PIL import Image
import sa_handler
device = "cuda" if torch.cuda.is_available() else "cpu"
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, scheduler=scheduler).to(device)
def run(image, src_style, src_prompt, prompts, shared_score_shift, shared_score_scale, guidance_scale, num_inference_steps, large, seed):
prompts = prompts.splitlines()
dim, d = (1024, 128) if large else (512, 64)
image = image.resize((dim, dim))
x0 = np.array(image)
zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
prompts.insert(0, src_prompt)
shared_score_shift = np.log(shared_score_shift)
handler = sa_handler.Handler(pipeline)
sa_args = sa_handler.StyleAlignedArgs(
share_group_norm=True, share_layer_norm=True, share_attention=True,
adain_queries=True, adain_keys=True, adain_values=False,
shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
handler.register(sa_args)
for i in range(1, len(prompts)):
prompts[i] = f'{prompts[i]}, {src_style}.'
zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)
g_cpu = torch.Generator(device='cpu')
if seed > 0:
g_cpu.manual_seed(seed)
latents = torch.randn(len(prompts), 4, d, d, device='cpu', generator=g_cpu, dtype=pipeline.unet.dtype,).to(device)
latents[0] = zT
images_a = pipeline(prompts, latents=latents, callback_on_step_end=inversion_callback, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images
handler.remove()
torch.cuda.empty_cache()
images_pil = [Image.fromarray((img * 255).astype(np.uint8)) for img in images_a]
return images_pil
with gr.Blocks() as demo:
with gr.Markdown("""
# Welcome to Tonic's Stable Style Align
Add a reference picture , describe the style and add prompts to generate images in that style. It's the most interesting with your own art !
""")
with gr.Row():
gr.Image(label="Reference image", type="pil")
with gr.Row():
gr.Textbox(label="Describe the reference style")
gr.Textbox(label="Describe the reference image")
gr.Textbox(label="Prompts to generate images (separate with new lines)", lines=5)
with gr.Accordion(label="Advanced Settings"):
with gr.Row():
gr.Number(value=1.1, label="shared_score_shift", min=1.0, max=2.0)
gr.Number(value=1.0, label="shared_score_scale", min=0.0, max=1.0)
gr.Number(value=10.0, label="guidance_scale", min=5.0, max=20.0)
gr.Number(value=50, label="num_inference_steps", min=1, max=100, precision=0)
gr.Checkbox(False, label="Large (1024x1024)")
gr.Number(value=0, label="seed (0 for random)", min=0, max=10000, precision=0)
with gr.Row():
gr.Gallery()
demo.launch()
|