Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ class TuluChatBot:
|
|
28 |
prompt = f"<|assistant|>\n {self.system_message}\n\n <|user|>{user_message}\n\n<|assistant|>\n"
|
29 |
return prompt
|
30 |
|
31 |
-
def
|
32 |
prompt = self.format_prompt(user_message)
|
33 |
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
|
34 |
input_ids = inputs["input_ids"].to(self.model.device)
|
@@ -48,14 +48,14 @@ class TuluChatBot:
|
|
48 |
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
49 |
return response
|
50 |
|
51 |
-
def
|
52 |
Tulu_bot.set_system_message(system_message)
|
53 |
if not do_sample:
|
54 |
max_length = 780
|
55 |
temperature = 0.9
|
56 |
top_p = 0.9
|
57 |
repetition_penalty = 0.9
|
58 |
-
response = Tulu_bot.
|
59 |
return response
|
60 |
|
61 |
Tulu_bot = TuluChatBot(model, tokenizer)
|
@@ -81,7 +81,7 @@ with gr.Blocks(theme = "ParityError/Anime") as demo:
|
|
81 |
output_text = gr.Textbox(label="🌷Tulu Response")
|
82 |
|
83 |
def process(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample):
|
84 |
-
return
|
85 |
|
86 |
submit_button.click(
|
87 |
process,
|
|
|
28 |
prompt = f"<|assistant|>\n {self.system_message}\n\n <|user|>{user_message}\n\n<|assistant|>\n"
|
29 |
return prompt
|
30 |
|
31 |
+
def Tulu(self, user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample):
|
32 |
prompt = self.format_prompt(user_message)
|
33 |
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
|
34 |
input_ids = inputs["input_ids"].to(self.model.device)
|
|
|
48 |
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
49 |
return response
|
50 |
|
51 |
+
def gradio_Tulu(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample):
|
52 |
Tulu_bot.set_system_message(system_message)
|
53 |
if not do_sample:
|
54 |
max_length = 780
|
55 |
temperature = 0.9
|
56 |
top_p = 0.9
|
57 |
repetition_penalty = 0.9
|
58 |
+
response = Tulu_bot.Tulu(user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample)
|
59 |
return response
|
60 |
|
61 |
Tulu_bot = TuluChatBot(model, tokenizer)
|
|
|
81 |
output_text = gr.Textbox(label="🌷Tulu Response")
|
82 |
|
83 |
def process(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample):
|
84 |
+
return gradio_Tulu(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample)
|
85 |
|
86 |
submit_button.click(
|
87 |
process,
|