Spaces:
Paused
Paused
File size: 8,202 Bytes
c6cb576 36c55b1 c6cb576 36c55b1 c6cb576 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import gradio as gr
from vllm import LLM, SamplingParams
from PIL import Image
from io import BytesIO
import base64
import requests
from huggingface_hub import login
import torch
import torch.nn.functional as F
import spaces
import json
import gradio as gr
from huggingface_hub import snapshot_download
import os
# from loadimg import load_img
import traceback
login(os.environ.get("HUGGINGFACE_TOKEN"))
repo_id = "mistralai/Pixtral-12B-2409"
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
max_tokens_per_img = 4096
max_img_per_msg = 5
title = "# **WIP / DEMO** 🙋🏻♂️Welcome to Tonic's Pixtral Model Demo"
description = """
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
model_path = snapshot_download(repo_id="mistralai/Pixtral-12B-2409", token=HUGGINGFACE_TOKEN)
with open(f'{model_path}/params.json', 'r') as f:
params = json.load(f)
with open(f'{model_path}/tekken.json', 'r') as f:
tokenizer_config = json.load(f)
model_name = "mistralai/Pixtral-12B-2409"
sampling_params = SamplingParams(max_tokens=8192)
llm = LLM(model=model_name, tokenizer_mode="mistral")
def encode_image(image: Image.Image, image_format="PNG") -> str:
im_file = BytesIO()
image.save(im_file, format=image_format)
im_bytes = im_file.getvalue()
im_64 = base64.b64encode(im_bytes).decode("utf-8")
return im_64
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
if llm is None:
return "Error: LLM initialization failed. Please try again later."
try:
image = Image.open(BytesIO(requests.get(image_url).content))
image = image.resize((3844, 2408))
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
messages = [
{
"role": "user",
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}]
},
]
outputs = llm.chat(messages, sampling_params=sampling_params)
return outputs[0].outputs[0].text
except Exception as e:
return f"Error during inference: {e}"
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
if llm is None:
return "Error: LLM initialization failed. Please try again later."
try:
image1 = Image.open(BytesIO(requests.get(image1_url).content))
image2 = Image.open(BytesIO(requests.get(image2_url).content))
image1 = image1.resize((3844, 2408))
image2 = image2.resize((3844, 2408))
new_image1_url = f"data:image/png;base64,{encode_image(image1, image_format='PNG')}"
new_image2_url = f"data:image/png;base64,{encode_image(image2, image_format='PNG')}"
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": new_image1_url}},
{"type": "image_url", "image_url": {"url": new_image2_url}}
]
},
]
outputs = llm.chat(messages, sampling_params=sampling_params)
return outputs[0].outputs[0].text
except Exception as e:
return f"Error during image comparison: {e}"
def calculate_image_similarity(image1_url, image2_url):
if llm is None:
return "Error: LLM initialization failed. Please try again later."
try:
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
image1 = image1.resize((224, 224)) # Resize to match model input size
image2 = image2.resize((224, 224))
image1_tensor = torch.tensor(list(image1.getdata())).view(1, 3, 224, 224).float() / 255.0
image2_tensor = torch.tensor(list(image2.getdata())).view(1, 3, 224, 224).float() / 255.0
with torch.no_grad():
embedding1 = llm.model.vision_encoder([image1_tensor])
embedding2 = llm.model.vision_encoder([image2_tensor])
similarity = F.cosine_similarity(embedding1.mean(dim=0), embedding2.mean(dim=0), dim=0).item()
return similarity
except Exception as e:
return f"Error during image similarity calculation: {e}"
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown("## How it works")
gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.")
gr.Markdown("3. The encoded image is used for text generation or similarity comparison.")
gr.Markdown(
"""
## How to use
1. For Image-to-Text Generation:
- Enter the URL of an image
- Provide a prompt describing what you want to know about the image
- Click "Generate" to get the model's response
2. For Image Comparison:
- Enter URLs for two images you want to compare
- Provide a prompt asking about the comparison
- Click "Compare" to get the model's analysis
3. For Image Similarity:
- Enter URLs for two images you want to compare
- Click "Calculate Similarity" to get a similarity score between 0 and 1
"""
)
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("Image-to-Text Generation"):
with gr.Row():
image_url = gr.Text(label="Image URL")
prompt = gr.Text(label="Prompt")
generate_button = gr.Button("Generate")
output = gr.Text(label="Generated Text")
generate_button.click(infer, inputs=[image_url, prompt], outputs=output)
with gr.TabItem("Image Comparison"):
with gr.Row():
image1_url = gr.Text(label="Image 1 URL")
image2_url = gr.Text(label="Image 2 URL")
comparison_prompt = gr.Text(label="Comparison Prompt")
compare_button = gr.Button("Compare")
comparison_output = gr.Text(label="Comparison Result")
compare_button.click(compare_images, inputs=[image1_url, image2_url, comparison_prompt], outputs=comparison_output)
with gr.TabItem("Image Similarity"):
with gr.Row():
sim_image1_url = gr.Text(label="Image 1 URL")
sim_image2_url = gr.Text(label="Image 2 URL")
similarity_button = gr.Button("Calculate Similarity")
similarity_output = gr.Number(label="Similarity Score")
similarity_button.click(calculate_image_similarity, inputs=[sim_image1_url, sim_image2_url], outputs=similarity_output)
gr.Markdown("## Model Details")
gr.Markdown(f"- Model Dimension: {params['dim']}")
gr.Markdown(f"- Number of Layers: {params['n_layers']}")
gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}")
gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}")
gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
if __name__ == "__main__":
demo.launch()
|