from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from torch.utils.data import Dataset, DataLoader from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info router = APIRouter() DESCRIPTION = "Climate Guard Toxic Agent Model" ROUTE = "/text" class TextDataset(Dataset): def __init__(self, texts, labels, tokenizer, max_len=128): self.texts = texts self.labels = labels self.tokenizer = tokenizer self.max_len = max_len def __len__(self): return len(self.texts) def __getitem__(self, idx): text = str(self.texts[idx]) label = self.labels[idx] encoding = self.tokenizer( text, max_length=self.max_len, padding='max_length', truncation=True, return_tensors="pt" ) return { 'input_ids': encoding['input_ids'].squeeze(0), 'attention_mask': encoding['attention_mask'].squeeze(0), 'labels': torch.tensor(label, dtype=torch.long) } @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. """ username, space_url = get_space_info() # Label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Get test dataset test_dataset = dataset["test"] # Start tracking emissions tracker.start() try: # Load model and tokenizer model_name = "Tonic/climate-guard-toxic-agent" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Prepare dataset test_data = TextDataset( texts=test_dataset["text"], labels=test_dataset["label"], tokenizer=tokenizer ) test_loader = DataLoader(test_data, batch_size=16) # Model inference device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() predictions = [] ground_truth = [] with torch.no_grad(): for batch in test_loader: input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) labels = batch['labels'].to(device) outputs = model(input_ids=input_ids, attention_mask=attention_mask) _, predicted = torch.max(outputs.logits, 1) predictions.extend(predicted.cpu().numpy()) ground_truth.extend(labels.cpu().numpy()) # Calculate accuracy accuracy = accuracy_score(ground_truth, predictions) # Stop tracking emissions emissions_data = tracker.stop() # Prepare results results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results except Exception as e: tracker.stop() raise e