Spaces:
Sleeping
Sleeping
attempt to remove all bias configurations last time
Browse files- tasks/text.py +46 -1
tasks/text.py
CHANGED
@@ -8,7 +8,7 @@ from torch.utils.data import DataLoader
|
|
8 |
from transformers import DataCollatorWithPadding
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
11 |
-
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
12 |
|
13 |
router = APIRouter()
|
14 |
|
@@ -104,6 +104,51 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
104 |
# Set model to evaluation mode
|
105 |
model.eval()
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
#--------------------------------------------------------------------------------------------
|
108 |
# MODEL INFERENCE ENDS HERE
|
109 |
#--------------------------------------------------------------------------------------------
|
|
|
8 |
from transformers import DataCollatorWithPadding
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
11 |
+
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
12 |
|
13 |
router = APIRouter()
|
14 |
|
|
|
104 |
# Set model to evaluation mode
|
105 |
model.eval()
|
106 |
|
107 |
+
# Preprocess function
|
108 |
+
def preprocess_function(examples):
|
109 |
+
return tokenizer(
|
110 |
+
examples["quote"],
|
111 |
+
padding=False,
|
112 |
+
truncation=True,
|
113 |
+
max_length=512,
|
114 |
+
return_tensors=None
|
115 |
+
)
|
116 |
+
|
117 |
+
# Tokenize dataset
|
118 |
+
tokenized_test = test_dataset.map(
|
119 |
+
preprocess_function,
|
120 |
+
batched=True,
|
121 |
+
remove_columns=test_dataset.column_names
|
122 |
+
)
|
123 |
+
|
124 |
+
# Set format for pytorch
|
125 |
+
tokenized_test.set_format("torch")
|
126 |
+
|
127 |
+
# Create DataLoader
|
128 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
129 |
+
test_loader = DataLoader(
|
130 |
+
tokenized_test,
|
131 |
+
batch_size=16,
|
132 |
+
collate_fn=data_collator,
|
133 |
+
shuffle=False
|
134 |
+
)
|
135 |
+
|
136 |
+
# Get predictions
|
137 |
+
predictions = []
|
138 |
+
with torch.no_grad():
|
139 |
+
for batch in test_loader:
|
140 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
141 |
+
outputs = model(**batch)
|
142 |
+
preds = torch.argmax(outputs.logits, dim=-1)
|
143 |
+
predictions.extend(preds.cpu().numpy().tolist())
|
144 |
+
|
145 |
+
# Clean up GPU memory
|
146 |
+
if torch.cuda.is_available():
|
147 |
+
torch.cuda.empty_cache()
|
148 |
+
|
149 |
+
except Exception as e:
|
150 |
+
print(f"Error during model inference: {str(e)}")
|
151 |
+
raise
|
152 |
#--------------------------------------------------------------------------------------------
|
153 |
# MODEL INFERENCE ENDS HERE
|
154 |
#--------------------------------------------------------------------------------------------
|