Spaces:
Sleeping
Sleeping
ModernBertConfig class that inherits from PretrainedConfig
Browse files- tasks/text.py +34 -17
tasks/text.py
CHANGED
|
@@ -15,6 +15,32 @@ router = APIRouter()
|
|
| 15 |
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection"
|
| 16 |
ROUTE = "/text"
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
@router.post(ROUTE, tags=["Text Task"],
|
| 19 |
description=DESCRIPTION)
|
| 20 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
@@ -52,35 +78,25 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 52 |
#--------------------------------------------------------------------------------------------
|
| 53 |
# MODEL INFERENCE CODE
|
| 54 |
#--------------------------------------------------------------------------------------------
|
| 55 |
-
|
| 56 |
try:
|
| 57 |
# Set device
|
| 58 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 59 |
|
| 60 |
# Model and tokenizer paths
|
| 61 |
model_name = "Tonic/climate-guard-toxic-agent"
|
| 62 |
-
tokenizer_name = "Tonic/climate-guard-toxic-agent"
|
| 63 |
|
| 64 |
-
# Create config
|
| 65 |
-
config =
|
| 66 |
-
model_name,
|
| 67 |
num_labels=8,
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
model_type="modernbert",
|
| 71 |
-
hidden_size=768,
|
| 72 |
-
num_attention_heads=12,
|
| 73 |
-
num_hidden_layers=22,
|
| 74 |
-
intermediate_size=1152,
|
| 75 |
-
max_position_embeddings=8192,
|
| 76 |
-
layer_norm_eps=1e-05,
|
| 77 |
-
classifier_dropout=0.0
|
| 78 |
)
|
| 79 |
|
| 80 |
# Load tokenizer
|
| 81 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 82 |
|
| 83 |
-
# Load model with
|
| 84 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 85 |
model_name,
|
| 86 |
config=config,
|
|
@@ -138,6 +154,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 138 |
print(f"Error during model inference: {str(e)}")
|
| 139 |
raise
|
| 140 |
|
|
|
|
| 141 |
#--------------------------------------------------------------------------------------------
|
| 142 |
# MODEL INFERENCE ENDS HERE
|
| 143 |
#--------------------------------------------------------------------------------------------
|
|
|
|
| 15 |
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection"
|
| 16 |
ROUTE = "/text"
|
| 17 |
|
| 18 |
+
class ModernBertConfig(PretrainedConfig):
|
| 19 |
+
model_type = "modernbert"
|
| 20 |
+
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
vocab_size=50368,
|
| 24 |
+
hidden_size=768,
|
| 25 |
+
num_hidden_layers=22,
|
| 26 |
+
num_attention_heads=12,
|
| 27 |
+
intermediate_size=1152,
|
| 28 |
+
max_position_embeddings=8192,
|
| 29 |
+
layer_norm_eps=1e-5,
|
| 30 |
+
classifier_dropout=0.0,
|
| 31 |
+
**kwargs
|
| 32 |
+
):
|
| 33 |
+
super().__init__(**kwargs)
|
| 34 |
+
self.vocab_size = vocab_size
|
| 35 |
+
self.hidden_size = hidden_size
|
| 36 |
+
self.num_hidden_layers = num_hidden_layers
|
| 37 |
+
self.num_attention_heads = num_attention_heads
|
| 38 |
+
self.intermediate_size = intermediate_size
|
| 39 |
+
self.max_position_embeddings = max_position_embeddings
|
| 40 |
+
self.layer_norm_eps = layer_norm_eps
|
| 41 |
+
self.classifier_dropout = classifier_dropout
|
| 42 |
+
|
| 43 |
+
|
| 44 |
@router.post(ROUTE, tags=["Text Task"],
|
| 45 |
description=DESCRIPTION)
|
| 46 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
|
|
| 78 |
#--------------------------------------------------------------------------------------------
|
| 79 |
# MODEL INFERENCE CODE
|
| 80 |
#--------------------------------------------------------------------------------------------
|
| 81 |
+
|
| 82 |
try:
|
| 83 |
# Set device
|
| 84 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 85 |
|
| 86 |
# Model and tokenizer paths
|
| 87 |
model_name = "Tonic/climate-guard-toxic-agent"
|
|
|
|
| 88 |
|
| 89 |
+
# Create custom config
|
| 90 |
+
config = ModernBertConfig(
|
|
|
|
| 91 |
num_labels=8,
|
| 92 |
+
id2label={str(i): label for i, label in enumerate(LABEL_MAPPING.keys())},
|
| 93 |
+
label2id=LABEL_MAPPING
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
)
|
| 95 |
|
| 96 |
# Load tokenizer
|
| 97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 98 |
|
| 99 |
+
# Load model with custom config
|
| 100 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 101 |
model_name,
|
| 102 |
config=config,
|
|
|
|
| 154 |
print(f"Error during model inference: {str(e)}")
|
| 155 |
raise
|
| 156 |
|
| 157 |
+
|
| 158 |
#--------------------------------------------------------------------------------------------
|
| 159 |
# MODEL INFERENCE ENDS HERE
|
| 160 |
#--------------------------------------------------------------------------------------------
|