Spaces:
Sleeping
Sleeping
fix text classifier bias parameter thing
Browse files- tasks/text.py +12 -5
tasks/text.py
CHANGED
|
@@ -35,11 +35,11 @@ class TextClassifier:
|
|
| 35 |
def __init__(self):
|
| 36 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
max_retries = 3
|
| 38 |
-
model_name = "
|
| 39 |
|
| 40 |
for attempt in range(max_retries):
|
| 41 |
try:
|
| 42 |
-
# Load config
|
| 43 |
self.config = AutoConfig.from_pretrained(
|
| 44 |
model_name,
|
| 45 |
num_labels=8,
|
|
@@ -47,6 +47,12 @@ class TextClassifier:
|
|
| 47 |
trust_remote_code=True
|
| 48 |
)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
# Initialize tokenizer
|
| 51 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 52 |
model_name,
|
|
@@ -56,12 +62,13 @@ class TextClassifier:
|
|
| 56 |
trust_remote_code=True
|
| 57 |
)
|
| 58 |
|
| 59 |
-
# Initialize model
|
| 60 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 61 |
model_name,
|
| 62 |
config=self.config,
|
| 63 |
trust_remote_code=True,
|
| 64 |
-
torch_dtype=torch.float32
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
# Move model to appropriate device
|
|
@@ -81,7 +88,7 @@ class TextClassifier:
|
|
| 81 |
try:
|
| 82 |
print(f"Processing batch {batch_idx} with {len(batch)} items")
|
| 83 |
|
| 84 |
-
# Tokenize
|
| 85 |
inputs = self.tokenizer(
|
| 86 |
batch,
|
| 87 |
return_tensors="pt",
|
|
|
|
| 35 |
def __init__(self):
|
| 36 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
max_retries = 3
|
| 38 |
+
model_name = "answerdotai/ModernBERT-base"
|
| 39 |
|
| 40 |
for attempt in range(max_retries):
|
| 41 |
try:
|
| 42 |
+
# Load config with modified settings
|
| 43 |
self.config = AutoConfig.from_pretrained(
|
| 44 |
model_name,
|
| 45 |
num_labels=8,
|
|
|
|
| 47 |
trust_remote_code=True
|
| 48 |
)
|
| 49 |
|
| 50 |
+
# Remove problematic config attributes
|
| 51 |
+
if hasattr(self.config, 'norm_bias'):
|
| 52 |
+
delattr(self.config, 'norm_bias')
|
| 53 |
+
if hasattr(self.config, 'bias'):
|
| 54 |
+
delattr(self.config, 'bias')
|
| 55 |
+
|
| 56 |
# Initialize tokenizer
|
| 57 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 58 |
model_name,
|
|
|
|
| 62 |
trust_remote_code=True
|
| 63 |
)
|
| 64 |
|
| 65 |
+
# Initialize model with modified config
|
| 66 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 67 |
model_name,
|
| 68 |
config=self.config,
|
| 69 |
trust_remote_code=True,
|
| 70 |
+
torch_dtype=torch.float32,
|
| 71 |
+
ignore_mismatched_sizes=True
|
| 72 |
)
|
| 73 |
|
| 74 |
# Move model to appropriate device
|
|
|
|
| 88 |
try:
|
| 89 |
print(f"Processing batch {batch_idx} with {len(batch)} items")
|
| 90 |
|
| 91 |
+
# Tokenize with padding and truncation
|
| 92 |
inputs = self.tokenizer(
|
| 93 |
batch,
|
| 94 |
return_tensors="pt",
|