Spaces:
Sleeping
Sleeping
revert to direct model loading
Browse files- requirements.txt +2 -1
- tasks/text.py +20 -12
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ python-dotenv==1.0.0
|
|
9 |
requests==2.31.0
|
10 |
numpy==1.24.3
|
11 |
pydantic==2.4.2
|
12 |
-
accelerate
|
|
|
|
9 |
requests==2.31.0
|
10 |
numpy==1.24.3
|
11 |
pydantic==2.4.2
|
12 |
+
accelerate
|
13 |
+
huggingface-hub
|
tasks/text.py
CHANGED
@@ -7,7 +7,7 @@ import os
|
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
from typing import List, Dict, Tuple
|
9 |
import torch
|
10 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
11 |
|
12 |
from .utils.evaluation import TextEvaluationRequest
|
13 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info, start_tracking, stop_tracking
|
@@ -26,12 +26,11 @@ class TextClassifier:
|
|
26 |
max_retries = 3
|
27 |
for attempt in range(max_retries):
|
28 |
try:
|
29 |
-
# Initialize
|
30 |
-
self.
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
35 |
print("Model initialized successfully")
|
36 |
break
|
37 |
except Exception as e:
|
@@ -43,11 +42,20 @@ class TextClassifier:
|
|
43 |
def predict_single(self, text: str) -> int:
|
44 |
"""Predict single text instance"""
|
45 |
try:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
print(f"Error in single prediction: {str(e)}")
|
53 |
return 0 # Return default prediction on error
|
|
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
from typing import List, Dict, Tuple
|
9 |
import torch
|
10 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
11 |
|
12 |
from .utils.evaluation import TextEvaluationRequest
|
13 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info, start_tracking, stop_tracking
|
|
|
26 |
max_retries = 3
|
27 |
for attempt in range(max_retries):
|
28 |
try:
|
29 |
+
# Initialize tokenizer and model separately
|
30 |
+
self.tokenizer = AutoTokenizer.from_pretrained("Tonic/climate-guard-toxic-agent")
|
31 |
+
self.model = AutoModelForSequenceClassification.from_pretrained("Tonic/climate-guard-toxic-agent")
|
32 |
+
self.model.to(self.device)
|
33 |
+
self.model.eval()
|
|
|
34 |
print("Model initialized successfully")
|
35 |
break
|
36 |
except Exception as e:
|
|
|
42 |
def predict_single(self, text: str) -> int:
|
43 |
"""Predict single text instance"""
|
44 |
try:
|
45 |
+
# Tokenize and prepare input
|
46 |
+
inputs = self.tokenizer(
|
47 |
+
text,
|
48 |
+
return_tensors="pt",
|
49 |
+
truncation=True,
|
50 |
+
max_length=512,
|
51 |
+
padding=True
|
52 |
+
).to(self.device)
|
53 |
+
|
54 |
+
# Get prediction
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = self.model(**inputs)
|
57 |
+
predictions = outputs.logits.argmax(-1)
|
58 |
+
return predictions.item()
|
59 |
except Exception as e:
|
60 |
print(f"Error in single prediction: {str(e)}")
|
61 |
return 0 # Return default prediction on error
|